
AN1202

VA10800/VA10820

VORAGO Timer (TIM) subsystem application note
Feb 24, 2017, Version 1.2

Abstract

This application note reviews the Timer (TIM) subsystem on the VA108xx family of MCUs and

provides several common use case examples that can be used as a starting point for end

applications. The examples progress in complexity and include:

A. PWM outputs

B. Periodic interrupt

C. Input pulse on a port pin measurement

D. Six channel PWM output suitable for motor control

Table of contents

1. TIM subsystem overview ... 2

2. Register overview ... 4

3. Examples ... 6

4. Summary ... 25

5. Common questions and issues ... 25

AN1202 - TIM Application Note

2

1. TIM subsystem overview

The TIM subsystem consists of 24 individually programmable blocks. Each unit is a highly

configurable circuit that can be used alone or coordinated with other TIM blocks for a variety of

functions including:

- Measuring the pulse width or a counting pulses on a port pin

- Generating periodic interrupts to help with scheduling software tasks

- Generating coordinated PWM outputs that can ensure dead time insertion

- Watchdog timer that needs to be updated within a certain period or the device is reset.

The heart of each timer block is a 32-bit down counter. The counter can be used to generate events

or measure intervals between events. An event can be activity on a port pin or an interrupt request

to or from any TIM block. Thirty-two-bit counter rollover range for various MCU clock rates is shown

in Table 1.

Table 1 - Timer roll over interval table for three clock frequencies

Clock Frequency Roll over interval Single count interval

50 MHz 85.89 seconds 20 nanosecond

25 MHz 171.8 seconds 40 nanosecond

10 MHz 429.5 seconds 100 nanosecond

There is no dedicated prescaler to divide the clock down to a slower speed but it is possible to use

another timer or one of the 7 IOCONFIG clock dividers to act as a prescaler using the cascade

function. For instance, if the desired clock rate for TIM03 was 10 msec, an IOCONFIG clock divider

could be set to (10 msec / 20 nsec) = 0.5 E6. TIM03 would be configured to become active when

the clock divider timed out. Every time the 10 msec interval ended, TIM03 would decrement 1 tick.

Timer channels can be linked together to cause a sequence of events. Alternatively, events on port

pins can trigger timer events. The mechanism linking events to an individual timer is referred to as

cascading. Each timer can have up to 107 input sources to that block’s cascade mechanism. See

the Cascade Selection Codes table in the programmer’s guide for the full list. In order for any

AN1202 - TIM Application Note

3

source’s output to be cascaded to another block, it must have its interrupts enabled. Note that

having a TIM’s or GPIO’s interrupt enabled does not immediately cause the CPU to be interrupted.

In order for the CPU to get an interrupt, the IRQ_SEL peripheral must be configured appropriately

and the NVIC must be enabled. In many cases, it is not advised to have the CPU interrupted for

every event on a timer.

Cascade inputs 0 and 1 can be used to start an action. An example of this would be triggering an

ADC conversion to measure in-rush current exactly 15.7 microseconds after a PWM output gates a

power transistor in a motor drive circuit.

Cascade 2 can be used to halt an activity. An example of this would be to perform an emergency

shut-down of a motor drive circuit if an over-current event is ever detected. Example 3A of this

application note uses cascade 2 to stop a timer when a rising edge on a push button switch is

detected.

There are 24 timer blocks on the VA108xx family. Each block is identical and can be configured to 1

of 7 output functions as outlined in Table 2. All of the 24 TIM blocks on the VA108xx are mapped

to port pins. All except TIM7, 8 & 9 can be mapped to two port pins as defined in the function

select field of the IOCONFIG register. TIM7, 8 and 9 only have one pin assignment option. Each

timer also has the ability to generate an interrupt request when the CNT_VALUE = 0. Which input

signals are used is set by the cascade control register (CSD_CTRL) and the registers CASCADE0, 1 &

2.

AN1202 - TIM Application Note

4

Table 2 - List of output functions (Status_Select) that a TIM block can be configured for

2. Register overview

To provide a great amount of flexibility on inputs and outputs of the timer, the VORAGO TIM

provides many options. Details on each bit can be found in the Programmer’s Guide. Table 3 - TIM

register table can be used as a quick reference to all the registers and bit definitions. This may be

useful during software debug and when designing the firmware.

0 A one cycle pulse when the counter transitions to 0. This is normally used for
generating interrupts and can be useful for software time keeping and interval
management.

1 Output the ACTIVE status bit. This can be useful for debugging software and timer
configuration.

2 Toggle between 1/0 every time the counter reaches 0. This can be used for
generating 50% duty cycle signals on pins.

3 PWMA output value.�1(active) when Counter Value >= PWMA Value, 0 (in-active)
when Counter Value < PWMA Value. This is explained in more detail in example
1A of this application note.

4 PWMB output value. (Uses both A and B) �1 when Counter Value < PWMA Value
and >= PWMB,�0 when Counter Value >= PWMA Value or < PWMB. This is
explained in more detail in example 1B of this application note.

5 Output the ENABLED status bit. This can be useful for debugging software and timer
configuration.

6 PWMA active mode.�1 when CounterValue <= PWMA Value and >0, 0 otherwise

AN1202 - TIM Application Note

5

Table 3 - TIM register table

 BIT LOCATION INSIDE THE 32-BIT REGISTER

 Register bit
location

31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0

CTRL 31-24 -- -- -- -- -- -- -- --
 23-16 -- -- -- -- -- -- -- --
 15-8 -- -- -- -- -- -- REQ_STOP STATUS_IN

V
 7-0 STATUS_SEL IRQ_ENAB AUTO_DEA

CTIVE
AUTO_DISA

BLE
ACTIVE ENABLE

RST_VALUE 31-0 VALUE (32-bits)
CNT_VALUE 31-0 VALUE (32-bits)

ENABLE 31-24 -- -- -- -- -- -- -- --
 23-16 -- -- -- -- -- -- -- --
 15-8 -- -- -- -- -- -- -- --

 7-0 ENABLE
CSD_CTRL 31-24

 23-16
 15-8 CASTRG2 CASINV2 CASEN2
 7-0 CASTRG1 CASTRG0 -- DCASOP CASINV1 CASEN1 CASINV0 CASEN0

CASCADE0 31-24 -- -- -- -- -- -- -- --
 23-16 -- -- -- -- -- -- -- --

 15-8 -- -- -- -- -- -- -- --

 7-0 -- CASSEL
CASCADE1 31-24 -- -- -- -- -- -- -- --
 23-16 -- -- -- -- -- -- -- --
 15-8 -- -- -- -- -- -- -- --
 7-0 -- CASSEL
CASCADE2 31-24 -- -- -- -- -- -- -- --

 23-16 -- -- -- -- -- -- -- --
 15-8 -- -- -- -- -- -- -- --
 7-0 -- CASSEL

PWMA_VALUE 31-0 VALUE (32-bits)
PWMB_VALUE 31-0 VALUE (32-bits)

PERID 31-0 0x0111 07E1
--

AN1202 - TIM Application Note

6

3. Examples

Example 1: PWM output example

Edge aligned PWM outputs are commonly used for driving circuits that do not require coordination

with other channels such as LED indicators or heater control. They are simple to setup and control,

also they are easy to implement in silicon. Example 1A shows how to quickly setup a timer to output

a PWM on a port pin. For motor control circuits where alignment of high and low side drivers is

imperative, center aligned PWMs are required. Center aligned PWMs can also help lower the

instantaneous peak current of an application by offsetting when power transistors turn on and off.

Center aligned PWMs are explained and demonstrated in example 1B.

Example 1A – PWMA mode (Edge aligned PWM)

Only the duty cycle and period are specified in this mode. As shown in Figure 1, the PWMA (edge

aligned) mode will have an active output (=1) when the timer count is greater than the PWMA value.

The timer count register (CNT_VALUE) will reset to RST_VALUE when the count reaches zero.

Figure 1 - Pictorial representation of PWMA mode. (aka edge aligned PWM)

AN1202 - TIM Application Note

7

Example 1A will have one PWM with a high frequency (20kHz) and 80% duty cycle and one with a

relatively low frequency (1 Hz) and a 50% duty cycle. The MCU clock frequency is 50 MHz.

Before setting up registers, a little math is required to determine the overflow and PWMA.

 Channel 1: 20 kHz with 10% duty cycle

RST_VALUE = 50 MHz / 20 kHz = 5000 (0x001388)

PWMA = 90% of RST_VALUE = 4500 (0x001194)

Steps to setup the module

1. In the SYSCONFIG peripheral

a. Enable peripheral clocks

b. Enable timer clocks and

2. In the IOCONFIG peripheral set pin function selection.

3. In the GPIO peripheral configure the port pins as an output

4. Set RST_VALUE and PWMA_VALUE.

5. Enable the TIM blocks and select the Timer mode (STATUS_SEL)

See Figure 2 for code that performs the above steps.

Figure 2 - Code snippet to show TIM1 being configured for PWMA mode

AN1202 - TIM Application Note

8

Figure 3 - Scope capture showing the waveform generated on TIM1

Example 1B – PWMB mode (Center aligned PWM)

In PWMB mode, the duty cycle along with both the rising and falling edge times are specified which

allows center aligned PWM outputs. As shown in Figure 4, the PWMB (center aligned) mode will

have an active output (=1) when the timer count is less than the PWMA value and greater than

PWMB. The timer count register (CNT_VALUE) will reset to RST_VALUE when the count reaches

zero.

AN1202 - TIM Application Note

9

Figure 4 - PWMB operation in pictorial format

Example 1B has two center-aligned PWM channels with a high frequency (~20kHz). One has an

80% duty cycle and one has a 20% duty cycle. A port pin input (switch button on the REB1 board)

will be used to trigger the start of both TIM blocks.

Steps to setup the modules

1. Enable peripheral clocks and set pin function selection.

2. Configure the port pins as outputs and the button as an input with interrupt enabled

3. Set Cascade 0 source as button input (PA11)

4. Set RST_VALUE, PWMA & PWMB.

5. Enable the TIM blocks and select the Timer mode (STATUS_SEL= PWMB)

6. Enable interrupts on the button input

AN1202 - TIM Application Note

10

Figure 5 - Code snippet showing TIM3 being setup for PWMB with cascade 0 trigger set to PA11

I

Figure 6 - Scope trace showing PWMB mode generating center-aligned PWM

There is a separate project available with the software download of this AN. If the Keil IDE is

already installed, just double click on “AN1201_simple_PWM.uvprojxx” in the project folder. A

project should open after a few moments. Perform a “Build All” operation by either clicking on the

build all icon or using the “Project” pull down menu. After the project is built and a REB1 board

AN1202 - TIM Application Note

11

connected to the host PC, enter debug mode by clicking the icon or using the “Debug” pull down

menu. This will move the code to the instruction RAM of the MCU. Run the program by either

clicking on the run icon or using the Debug pull down menu.

Caution: Setting breakpoints is an excellent way to monitor the progress of instructions in a

program. It needs to be completely understood that the peripheral subsystem is not impacted by a

breakpoint. For example, the timers will all continue to run if the CPU is halted at a breakpoint. In

most cases this is not an issue but when dealing with interrupts, halting the CPU while the

peripherals continue to run can cause unpredictable results.

Example 2: Periodic interrupt

One very useful function of timers is creating a periodic interrupt that software can use for scheduling

tasks and keeping track of time. Example 2 will generate an interrupt every 10 msec using TIM23.

The VA108xx has an IRQSEL peripheral that routes the >100 interrupt sources on the device to the

32 inputs of the NVIC controller. A small interrupt subroutine will be used to count to 100 and toggle

a port pin controlling one of the User LEDs on the REB1 board.

In order for the compiler to comprehend NVIC interrupt 30 being associated with a particular ISR,

the VA108xx_startup.c file must be modified. Changing all instances of OC30_IRQHandler to

OC30_IRQHandlerX will vector the CPU to the proper ISR when an interrupt on IRQ30 occurs. This

has already been done in the example file.

Steps to setup the module

1. Enable peripheral and timer clocks in SYSCONFIG->PERIPHERAL_CLK_ENABLE and

SYSCONFIG->TIM_CLK_ENABLE respectively

2. Configure the TIM23

a. Set STATUS_SEL to 0 which will generate a 1 cycle pulse every time the count reaches

zero.

b. Enable the TIMER interrupt

c. Set RESET_CNT to (10 msec / 20 nsec) = 500e+3

d. Enable TIM23

3. Assign the TIM23 interrupt to NVIC input 30 in the IRQSEL block.

4. Enable interrupts on the NVIC

AN1202 - TIM Application Note

12

See Figure 7 for working code that implements the above steps.

Figure 7 - Code snippet to configure timer for periodic interrupt

Figure 8 - Example code snippet of timer ISR for periodic interrupt

AN1202 - TIM Application Note

13

A separate project “AN1202_periodic_int.uvprojx” accompanies this application note in the SW

attachment. Open, compile, download and run the project similarly to what was done in example 1.

When the program is running, LED3 on the REB1 board should blink with 1 second on and 1 second

off. The ISR includes a check against the SYS_TICK counter of the Cortex-M0 which is a 24-bit

counter that decrements once every system clock cycle.

Note: The VA108xx has several circuits that can be used to generate periodic interrupts: a) any of

the 24 timers, b) the M0’s 24-bit SYS_TICK counter and c) 7 of the pin filter timers. Using one of the

pin filter timers for this simple purpose is recommended over a timer channel which can perform

much more complex actions.

Example 3: Input signal pulse width measurement and pulse count

Many applications require the accurate measurement of activity on a port pin. Using a timer to do

this is an easy way to provide a very accurate measurement and keep the CPU load for this

computation to a minimum. It is also possible to put the processor in a WAIT mode such that the

CPU is idle while the timer continues to monitor a port pin status. The CPU can exit WAIT mode by

any TIM or GPIO interrupt. Each port pin can be set to trigger an interrupt on rising, falling or both

edges. In turn, any timer can be configured to react to an interrupt on any port pin. When the

trigger event occurs, the timer can be started or stopped. Alternatively, the timer can be enabled

when a port pin is high or low. The edge or level configuration is set for the port pin using the GPIO

control registers.

Example 3A: Input pulse width measurement

Example 3A will configure a timer to calculate the time a port pin is pulled low. This can be used for

de-bouncing a switch or accurately measuring a pulse width. The example will route the push button

switch input to TIM1 with the cascade feature. An interrupt will be generated on both the rising and

falling edge. On the rising edge, the timer will start automatically and the interrupt will be used to

setup the cascade 2 input so the timer is stopped when the pin rises.

AN1202 - TIM Application Note

14

Some care must be taken to avoid long pulses (>85 seconds) that cause overflow errors when the

counter rolls over from 0 to the RST_VALUE. In that case, software must keep track of the number of

time-outs that occur (CNT_VALUE = 0) and add the appropriate number of RST_VALUE counts to the

pulse width.

Steps to setup the module:

1. In the SYSCONFIG peripheral:

a. Enable peripheral clocks

b. Enable timer clock

2. Setup PA[11] to be input pin with filtering and generate IRQ on both edges

a. In the SYSCONFIG setup Filter1 for a divide of 0xFF

b. In the IOCONFIG peripheral configure PA[11] as an input with a pull-up enabled

and filter 1 enabled

c. In the GPIO peripheral set PA[11] to have interrupts on both rising and falling

edges

d. In the IRQ_SEL peripheral assign PA[11] to IRQ30

3. Configure timer 1 to output active status and to be triggered when PA[11] interrupt fires

a. Setup PA[1] as an output

b. Set Function select for PA[1] as TIM1

c. Setup TIM1

i. STATUS_SEL = output active status

ii. RST_VALUE = 0xFFFFFFFF, this allows up to an 85 second pulse

iii. Set both cascade 0 and cascade 2 source to be PA[11]

iv. Set Cascade control to be enabled when Cascade0 is active

4. Enable TIM1

5. Enable the NVIC IRQ30 and set Priority to 0. (Zero is highest priority)

6. Enable interrupts on PA[11]

See Figure 9 for working code that implements the above steps.

AN1202 - TIM Application Note

15

Figure 9 - Subroutine to setup TIM1 for input capture of a pulse on PA[11]

The IRQ will be generated on each rising and falling edge of PA11. In the ISR, software must

determine if a falling or rising edge occurred. If it was a falling edge, this is the beginning of the

measurement and the timer already started decrementing. All that is needed to do is to setup

AN1202 - TIM Application Note

16

cascade control so cascade 2 is active and will stop the clock at the next event. If it was a rising

edge, the pulse width needs to be calculated by subtracting the CNT_VALUE from the RST_VALUE

and the cascade control must be setup to use cascade 0 to trigger an event when the next falling

edge occurs. See Figure 10 for working ISR code.

Figure 10 - Interrupt subroutine to assist with input capture. This ISR is called for every edge

detected on PA[11]

AN1202 - TIM Application Note

17

Figure 11 - Scope capture of input capture example along with measured "input_pulse" variable.

Scope measured pulse to be 143.97499 msec. The MCU measured the pulse to be 143.96548

msec

Example 3B – Pulse counter

Some applications use encoder wheels that provide a pulse train with a speed related to the angular

velocity of the wheel. In some cases, it is better to count the pulses during a certain interval to

indicate the speed. This can help average the speed and allow for different rise and fall times on the

sensor output. Example 3B will use two channels to accurately count the number of pulses in a 0.1

second window. The input filter capability of the GPIO will be used to eliminate noise on the input or

transitions with multiple edges.

Steps to setup the module

1. Enable peripheral clocks in SYSCONFIG->PERIPHERAL_CLK_ENABLE

2. Enable timer clocks in SYSCONFIG->TIM_CLK_ENABLES

3. Setup 1 timer (TIM23) to create a periodic interrupt every 100msec.

a. Enable interrupt

b. Set RST_COUNT to 100msec/20nsec = 500E+6

4. Setup second timer (TIM3) to be active when port pin PA[8] sees a falling edge.

5. Setup IOCONFIG peripheral to:

AN1202 - TIM Application Note

18

a. set pin function selection,

b. configure the port pin(s) as inputs with a pull-up enabled,

c. select input filter source (FLT_TYPE and FLT_NUM)

d. enable interrupt on falling edge of port pin

6. Setup filter count interval in SYSCONFIG->IOCONFIG_CLKDIV1 register

7. In GPIO block, setup PA[8] to generate an interrupt on each falling edge

8. Enable the TIMER blocks

See Figure 12 for working code that implements the above steps.

Figure 12 - Code Snippet to setup Timer 3 to only count down during a falling edge of PA[8]

See Figure 13 for code used in the ISR.

AN1202 - TIM Application Note

19

Figure 13 - Code Snippet to show ISR used for calculating number of pulses on TIM3

Figure 14 shows a scope capture of pulses being input to PA3 and the interval used on TIM3. On

the right side, the TIM3 register values are shown. In the lower left, a 16 element array is shown

with the last 16 interval edge counts.

Figure 14 - Scope capture with MCU RAM and register information for input pulse count. A)

Waveform showing the interval for counting pulses and the actual pulse train. (Note 10 pulses per

half period of the window), B) Memory display window from debugger showing the 16 entry array

with pulse count and C) TIM3 register contents to count pulses on PA[8]

AN1202 - TIM Application Note

20

A separate project, AN1202_input_capture.uvprojx, accompanies this application note in the SW

attachment. Open, compile, download and run the project similarly to what was done in example 1.

A jumper will need to be placed on the REB1 board between PA[1] and PA[8] for the demonstration

program to run properly.

Example 4: 3-phase motor control driver example

Many motor control applications configure their power switches as shown here. This configuration

allows 6 distinct magnetic field vectors to generated in the motor windings. With proper control the

switches can be turned on and off to creating a rotating field in the motor’s stator which applies

torque to the rotor.

Figure 15 - Common power switch topology for 3-phase motor control & magnetic field direction

diagram.

This configuration requires coordinated PWM outputs to control both torque and speed. Care must

be taken to avoid having the top and bottom switching devices of a single leg turned on at the same

time. This is commonly referred to as “shoot-through” and can cause permanent damage. The

VA108x0 timer can produce the necessary PWM signals and include an immediate shutdown

mechanism if a fault is detected.

AN1202 - TIM Application Note

21

The timer topology for this example is shown in Figure 16. To synchronize all the timers we use

TIM0 as a trigger. TIM1-6 are setup in PWMB mode to create 120 degree intervals as shown in

Figure 17. TIM7-9 are used to provide higher speed PWM switching to control the energy provided

to the motor. For this example, TIM7-9 use a simple PWMA mode to implement a chopper type of

control. It is possible to use PWMB mode with interrupts to change the duty cycle after each PWM

period to more closely resemble an ideal sinusoid. A future application note will show a full motor

control application with current monitoring and emergency shutdown if an overcurrent condition

exists.

Figure 16 - Timer topology to create the 6 PWM outputs to feed a three phase motor

AN1202 - TIM Application Note

22

Figure 17 - Timeline of 6 channel output generation for 3-phase motor. Note that all 6 outputs are

re-synchronized each cycle at 0 degrees.

The software for this example uses nested structures for each of the 6 phases and timer driver library

as shown in Figure 18 and Figure 19. This reduces error prone redundant coding for direct register

writes and forces consistency between channel setup.

AN1202 - TIM Application Note

23

Figure 18 - Code excerpt #1 from reb_timer.h showing structures used to organize timer

configuration.

Figure 19 - Code excerpt #2 from reb_timer.h showing structures used to organize timer setup.

AN1202 - TIM Application Note

24

The structures are initialized with code as shown in Figure 20. Note that the start and end offset

values are calculated in the pulse structure assignment as a ratio of the 360 degree cycle.

Figure 20 - Code excerpt from main routine that sets up timers 7, 8 and 9.

Figure 21 - TIM7 register content after the VOR_TIM_Create(s7) is executed.

AN1202 - TIM Application Note

25

Figure 22 - Waveform of 6 channels (DATA0-DATA5) feeding 6 power transistors in a 3-phase H-

bridge. Channels DATA6 and DATA7 are the timers cascaded timers feeding DATA3 and DATA5.

A separate project accompanies this application note in the SW attachment. Open, compile,

download and run the “AN1202_3phase_pwm.uvprojx” project similarly to what was done in

example 1. Port A 1-9 signals can be monitored on the REB1 board to see all the waveforms. Note

that PA[6] and PA[7] are not routed to connectors but can be probed on LED’s D3 and D4.

4. Summary

This application note has demonstrated many of the functions possible with the 24 TIM channels on

the VA108xx. Compared to many other M0 based devices, the VA108xx has a very powerful timer

subsystem using 32-bit counters and has the ability to automatically start or stop when specific

activity occurs on GPIO or other timers.

Examples of PWM outputs, input captures, periodic interrupts and a 3-phase motor drive were

provided. This should provide a starting platform for most applications making use of the TIM

subsystem.

5. Common questions and issues

• Question: How are timer channel interrupts prioritized?

AN1202 - TIM Application Note

26

a. This is determined by the programmable ARM M0 NVIC. ARM Cortex-M uses the

“reversed” priority numbering scheme for interrupts, where priority zero corresponds

to the highest urgency interrupt and higher numerical values of priority correspond to

lower urgency. The M0 has 2 bits to set interrupt priority hence only 4 interrupt

priority levels.

b. If two channels have the same interrupt vector, software will need to handle the

potential for consecutive interrupts.

• Question: What is the finest resolution a timer can have?

a. All timers will use the MCU bus clock for decrementing the counter. The maximum

frequency of the VA108xx is 50 MHz, hence the finest resolution is 20 nsec.

• Question: How to get timer that counts every 10 msec. instead of at the bus frequency?

a. There are several ways to do this but the simplest is to use one of the pin filter dividers

as a cascade input. The pin filter will create a single bus cycle pulse every time it

reaches a count of zero.

• Question: Even when the processor is halted during debug, the timer continues to run. Is that

right?

a. Yes, all the peripherals continue to run when the CPU is halted. Care should be taken

when debugging with active power transistors and loads.

*** Change log: ***

Rev 1.2 Feb 2017

- Corrected unresolved cross reference to Table 3.

 For more information, contact below or visit our web site at www.voragotech.com
VORAGO Technologies | 1501 S MoPac Expressway, Suite 350, Austin, Texas, 78746 | info@voragotech.com

