AN1204 TECHNOLOGIES

VORAGO VA10800 eFuse programming application note
November, 2020 Version 1.1

VA10800

Abstract

The VA10800 MCU contains programmable eFuse memory that can be useful for board
identification, serialization, sensor calibration information, product life tracking or other use
cases where a relatively small amount of information is required to be permanently stored.
Boot sequence variables can also be set by the eFuse memory.

The eFuse array can only be programmed and read via the JTAG port. During the boot
sequence two 32-bit words are read from the eFuse and stored in a CPU register: EF_ID and
EF_CONFIG.

This application note provides instructions and code to use one REB1 development board to
program and read the eFuse array in a second VA10800 MCU via the standard JTAG
connection.

Table of contents

1 FUSE fUNCHONAIILYcooieiiiiiiieeeeeeeeeee aaaaaeaeaeeeaeeeeees 2
P o P10 1YLV TR oo g =T ox 1 o] o PSSR 3
3 Procedure to read and program €FUSE MEMOIYcccoviiiuuriiirireeeeeeeeeessnnereneeeeeeeeesessnnnnsenes 6
4 RUunNing the eXxample PrOJECTuuiiiiiiie e e e e e s e e e e e e e e e e aans 11
S O o [ox 1] o] o USSP RPEPRTR 13
I © 1 1= G =20 T o =SSR 13

AN1204 — VA10800 eFuse programming Application Note TECHNOLOGIES

1 eFuse functionality

The eFuse memory is programmed by means of electromigration of the cobalt silicide on the
fuse as opposed to an actual rupture of the fuse. The use of the electromigration process
results in a more reliable fuse that does not rupture the fuse or the passivation and does not
potentially contaminate the chip with metal debris that is ejected from the rupture site. The
typical fusing current of a single bit and duration is 13mA for 200us. A state machine inside the
MCU programs a single bit at a time to limit the current draw.

Past space flights with different fuse type memory have shown the propensity for regrowth of
the altered polysilicon resulting in a bit reverting from a programmed “1” to a “0”. This regrowth
is attributed to an extended time with a voltage potential existing between two closely spaced
nodes in the memory cell. The VA10800 only reads the eFuse memory after a RESET.
Information from two locations are stored in registers, then the eFuse is powered down. By
limiting the time that the voltage is applied to the memory array, the chance of any regrowth is
virtually eliminated.

The VA10800 contains a 32-bit by 32-entry eFuse array. The eFuse array is read during the
RESET sequence and then turned off. Two of the 32-bit entries are stored in registers:
EF_CONFIG and EF_ID. The other locations can only be read via the JTAG interface.

The EF_CONFIG register determines the following:

- Boot SPI clock rate (bus clock divided by 2, 6, 12 or 52)

- Boot SPI memory size (4k to 128 kbytes)

- Redundant boot (reads memory twice)

- Boot delay (0-500 mSec)

- ROM read instruction code (default is 0x3 which matches most SPI EEPROM,
MRAM and FRAM memories)

- ROM address mode (16 or 24 bits, 128k memories require 24-bit addresses)

The eFuse array can be read and programmed via the JTAG interface. User code is not
directly able to either read or program the eFuse memory. This restriction was implemented to
ensure that the eFuse gate did not have a voltage potential across it for an extended time.

1.1 eFuse organization

There are 32 addresses each with 32 bits of information in the eFuse array. Addresses 0 & 1
have unique functionality and are used as index pointers to the EF_ID and EF_CONFIG fields.
Since it is impossible to change a bit from a “1” to a “0”, a unique pointer scheme is used
whereby the most significant bit that is set to a “1” determines the index value per the following
equation.

AN1204 — VA10800 eFuse programming Application Note

Index pointer location = (most significant bit position with a “1”) + 2

See Figure 1 - eFuse Index pointer explanation for an illustration of this equation and an
example case.

eFuse Address definitions Example case MSB position = 1 is 28.
s Lrammd v ot
0x00 eFuse_ID index 0x00 eFuse_ID index = Ox1FFF:FFFF
0x01 eFuse_Config index 0x01 eFuse_Config index = 0x03
0x02 General use > 0x02 General use
0x03 General use 0x03 0x81400701
General use General use
General use General use
Ox1E General use Ox1E 0x1234
Ox1F General use Ox1F General use
MSB position=1is 1.
Index pointer equation: Address pointed to = After RESET: ~. Address pointed
(most significant bit position with a 1 in it) + 2. EF_ID = 0x1234 to is: 1+2= 0x03

EF_CONFIG = 0x81400701

Figure 1 - eFuse Index pointer explanation

Caution: Programming the wrong information into the eFuse array can leave the entire device
inoperative. Care should be taken to double-check the planned programmed data prior to
programming the device.

2 Hardware connection

The hardware connection from a REB1 board to another VA10800 MCU is described in this
section.

A convenient way to connect a REB1 development board to the standard 10-pin JTAG
connector is to use a commercially available assembly from Olimex (ARM-JTAG-20-10) which
retails for less than $10 USD. The standard JTAG connector is 0.05” center x 2 row. A
commonly used part is the Samtec FTSH male vertical box header- part # SHF-105-01-L-D-
TH. It is also possible to fly wire the connections or to make a custom cable for this purpose.
Keeping the cable under 6 inches in length is important for signal integrity.

AN1204 — VA10800 eFuse programming Application Note

Figure 2 - Olimex harness for connecting to standard 0.05" x 2 row JTAG interface

The harness plugs directly into J14 of the REB1 board for the digital signals and a separate
ground connection must be made as shown in Figure 3. Table 1 shows the connections from
the REB1 board to the Olimex cable. Note that pin 1 of J14 aligns with pin 19 of the Olimex
cable’s 20-pin header. An additional ground connection is required to have both boards at the
same potential. Figure 4 shows the Olimex cable assembly schematic.

Once the connector is in place you are ready to run software on the REB1 board to program
and read the eFuse memory. Note that both boards will require their own power source since
the JTAG interface does not have a power line.

Figure 3 — Picture of REB1 board to JTAG connector on second board

AN1204 — VA10800 eFuse programming Application Note

TECHNOLOGIES

Olimex 20 pin connector REB1- J14 connector Notes
Pin # Signal Pin # Signal
19 +5V 1 PORTBJ10] Not used — left as input
17 NC 2 PORTBJ11] Not used — left as input
15 RST 3 PORTB[12] Board with MCU being
programmed must have this
signal tied to TRSTn
13 TDO 4 PORTBI[13] MCU input
11 NC 5 PORTBI[14]
9 TCK 6 PORTB[15] MCU output
7 TMS 7 PORTB[16] MCU output
5 TDI 8 PORTB[17] MCU output
3 TRST 9 PORTBJ[18] No connect on cable; Not used —
left as input
1 VTRef 10 PORTBJ[19] Not used — left as input

Note: A ground connection is required between boards. We recommend using a jumper
wire from a REB1 ground pin to pin 20 of the Olimex 20-pin connector. This will minimize
the ground loop area between boards.

Table 1 - Connections between REB1 and JTAG connector

JTAG/ISWD_2
TMS/SWDIO TMS/SWDIO 2 1
o4 JCKISWDCLK TCK/SWDCLK 4L 13
=z TDC/SWO TDOISWO € 5
7]]l 1]] I 14 !
o RST RST 10 9 RZ2—— OR
9 i
'__
e GPH127SMT-02x05(PIN7-CUT)
5
o
=
g_":
@
=
'__
=
0
o 3
= TRSTN .
1ol
hd T
G N_TMS/SWDIO . 1
= IN_TCKISWDCLK
5 1 R3, NA M)
o TDOISWo— 3 I
RST e 1716 >— b
NA —¢ JTAG/SWD_1_17 JTAGISWD_1_18 »— .
Ri— N —¢ JTAG/SWD_1_19 JTAG/SWD_1_20 »— "

IDC20S/PCB

ARM-JTAG 20-10 ADAPTER

Rev. A

COPYRIGHT(C) 2011, OLIMEX Ltd.

http:/fwww.

olimex.com/dev

Figure 4 - Olimex JTAG harness schematic

AN1204 — VA10800 eFuse programming Application Note TECHNOLOGIES

3 Procedure to read and program eFuse memory

The VA10800 MCU has two JTAG Test Access Ports (TAPS). They are in series as shown in
Figure 5. The first is for the standard ARM® debug TAP (DBGTAP) which has a four-bit
instruction register. The second is the VA10800 test port which has a five-bit instruction

register and is unique to the device. The second TAP contains the interface to the eFuse
block.

JTAG pins TAP1 = ARM DBGTAP TAP2 = VA108xx test TAP

on MCU

TDI DI TDO TDO
TDI

TMS

TCK
TRST

TDO

Figure 5 - Serial Test Access Port connections

To not have TAPL1 interfere with communications to TAP2, we will always send four zeros to
the TAP1 instruction register. This keeps TAP1 in bypass mode. For example, to select the
instruction register 0x17 of the VA10800 TAP, we would send nine bits on TDI to the JTAG
instruction register. The first four bits would be zeros and the last five would be 0x17 or
%10111. Note that the JTAG convention is to shift the least significant bit out first so a logic
analyzer would show %111010000 for this transaction.

Section 5 of the VA10800 programmers guide has details on the eFuse read and programming
steps as outlined in the following two sections.

3.1 Reading an eFuse location

The following steps must be taken to properly read eFuse memory. Each of these steps is
conducted by first shifting data to the instruction register (SIR) followed by either a read or
write of the associated data register via the shift data register (SDR) command. Data registers
have variable length and it is only required to shift the number of bits implemented. As shown

AN1204 —

VA10800 eFuse programming Application Note TECHNOLOGIES

in Figure 6, the software accompanying the application note has comments to make it easy to
follow the steps being taken.

a)
b)
€)
d)
€)
f)
9)

Load EF_WDATA register with O (Clear Test Read Data)

Load EF_ADDR register with the desired read address (Load Address)
Load EF_CMD registers with 0x1 (Interface Enable)

Poll/Read EF_STATUS for Bit 0 being 1 (Oscillator is running)

Load EF_CMD registers with 0x5 (Issue Read Command)

Read EF_RDATA register (Result of EFuse read)

Load EF_CMD registers with 0x0 (Interface Disable)

VORAGO -

AN1204 — VA10800 eFuse programming Application Note TECHNOLOGIES

360

361 mint32 t Read EF ADE (uint32 t add count, uint32 t start_add)
362 L1

3683 uint& t HBO ready, cnt=0, loop count ;
364 | volatile uint32 t read add H

365 loop count = 0 ;

366 while (loop count++ <« add count)

367 H {

368 G_TDO[D] = SIR sub(5,EF_WDATL) H ff =step a
369 G_TDO[1] = SDR_sub (32, 0x0) ;

370

371 read add = (start add+loop count-1} ; // step b
372 G_TDO[2] = S5IR sub(53,EF_ADDR) H

H1E G_TDO[3] = S5DR_sub (6, read add) :

2

2 F G_TDO[4] = 5IR sub(3,EF_CMD) : ff step c
376 G_TDO[5] = SDR_sub(4,0xl1) ;

277

3278 G_TDO[20] = 5IR_=ub (%, EF STATUS) : ff step d
200 G_TDO[21] = 5DR_s=ub (3, 0x1) ;

380

381 HBO ready = 0 ;

382 while (HEC ready == 0)

383 H {

384 G_TDO[5] = 5IR _=sub(3,EF STATUS) H

s G_TDO[&] = SDE_sub (3,0x1} ;

386 if (G_TDO[e] '= 0) HBO ready = 1 ;

387 cnt ++ ;

388 if (ent > 100 { comm timeout(l) H H
3885 }

200 -

351 G_TDO[7] = S5IR sub(3,EF_CMD) : ff step e
352 G_TDO[E] = SDR_sub(4,0x5) :

HEE

o G_TDO[2] = S5IR sub(5,EF_RDATL) : ff step £
IS G_TDO[10] = 5DR_=ub (32,0=x0) ;

396 EF ADD walue[loop count-1] = G _TDO[10] H
=T

2408 G_TDO[11] = SIE_sub(4,EF CHD) : ff step g
HEE G_TDO[12] = 5DR_=ub (32,0=x0) ;

400 ~ }

401 return cnt

402

403 | }

LI

Figure 6 - Subroutine to read eFuse memory

AN1204 — VA10800 eFuse programming Application Note TECHNOLOGIES

3.2 Writing an eFuse location

Similar to reading an eFuse location, a set of steps must be taken to program eFuse memory.
As shown in Figure 7, the software accompanying the application note has comments showing
each step to make it easy to follow the process.

a) Load EF_ADDR register with the desired write address (Load Address)
b) Load EF_WDATA register with data (Load Data)

c) Load EF_TIMING register with proper timing data

d) Load EF_CMD registers with 0x3 (Interface Enable with Write Mode)
e) Poll/Read EF_STATUS for Bit 0 being 1 (Oscillator is running)

f) Bring EFUSE_WRITE_ENNn pin low (Enable Write)

g) Load EF_CMD registers with 0x7 (Issue Write Command)

h) Poll/Read EF_STATUS register for Bit 1 being 0 (Check/Wait for write complete)
i) Bring EFUSE_WRITE_ENnN pin high (Disable Write)

j) Load EF_CMD registers with 0x0 (Interface Disable)

k) Do eFuse Read procedure to verify result

Note: Steps f and i are not implemented in software since there is a jumper on the board that
is being programmed. It is possible to read the eFuse memory with the EFUSE_WRITE_ENnN
pin in either state. There is no need to stop the program after step h to remove the jumper
controlling the EFUSE_WRITE_ENN pin.

AN1204 — VA10800 eFuse programming Application Note

422 wint32 t Prog EF ADR (uint3Z t address, uint32 t value)

423 B4

424 uintg8_t HBO ready, cnt=0,ctrl busy :

425 | volatile uint32 t read add, iter til prog complete = 0 H

426

427 Reset JIAG() ; /f reset JTAG =tatemachine

428 G TDO[Z2] = 5IR sub(9,EF ADDR) !/ step a

429 G TDO[3] = 5DR_sub(&, address)

430

431 G TDO[O] = 5IR _sub(3,EF WDATL) PSS =Etep b

432 G TDO[1] = SDR_sub(33,value) ;

433

434 SIR sub(3,EF _TIMING) : /f step c

435 SDE_sub (26, 0x840022) ; S =set timing for efuse operation

436

S35 G_TDO[4] = SIR _sub(%,EF CHD) : ff step d

438 G TDO[S] = SDR_sub(4,0x3) ;

435

440 HBO ready = 0 ; ff =step e

4471 while (HBC ready == 0}

442 [H {

S G_TDO[S5] = SIR sub(3,EF_STATUS) : //5tep

444 G TDC[&e] = S5DR_sub(3,0xl) ;

445 if (G TDO[e] '= 0) HBO ready = 1 ;

445 cnt ++ ;

T e H

448 f/ =step £ - Bring efuse enable pin low iz done by jumper on REE1
449

450 G _TDO[7] = 5IR_sub (%, EF _CMD) : fi3tep g

451 G TDO[E] = SDE_sub(4,0x7) ; fF start the write operation
452 G _TDC[E8] = SDR_sub(4,0x3) : [/ clear the start operation bit
CiEE VOER_TIM3->CNT VALUE = OxFEFFEEEE ;//=et TIM3 to reset wvalue (used to measure prog_time)
454

CiEE) ctrl busy = 1 ;

45§ while {ctrl busy == 1} //5tep h

457 H {

458 iter til prog_complete ++

459 if(iter til prog complete > 100 {comm_timeout(S];}fﬁabnrt if status does not change
460 G _ITDO[20] = 53IR sub(53,EF_STATUS) H

461 G TDCO[21] = SDR_sub(3,0xl) :

462 if(! (G TDO[21] & OxZ)) ctrl busy = 0 ;

463 time to prog = OxFFFEFFFFF - WVOR TIM3->CHT VALUE ;

464 H

485 ff step i - Bring efusze enable pin high i=s done by jumper on REEL
466

467 G_TDO[11] = 5IR_=ub(4,EF _CMD) ;P ffstep 3

468 G TDO[12] = SDR_sub(32,0x0)

469

470 G TDO[13] = Read EF RDR(l,address); // step k

471 if (EF_ADD walue[0] != wvalue) {cnmm_timenuttE}:}ffabnrt if read does not matcﬂ
472 return cnt ;

AN

Figure 7 - Subroutine to program eFuse memory

10

AN1204 — VA10800 eFuse programming Application Note TECHNOLOGIES

4 Running the example project

The example code was developed in the Keil MDK environment. Please follow the instructions
in the REB1 User's manual to install the IDE and the Vorago Pack file. Once that is done,
simply click on the project file called “JTAG_va108xx.uvprojx”.

The main routine as shown in Figure 8, has a call to read the first 16 words of eFuse array and
store the data in an array “EF_ADD _value[]’. The sample project will already have a memory
window active showing this array. The calls to program the eFuse on lines 508 - 514 have
been commented out to prevent inadvertent writes to memory. When the locations and
contents have been determined, remove the “//” at the beginning of these lines and modify the
address and data values. Then run the program.

If the program and / or read operation is successful, the code will hang at a while(1) statement
on line 518 as shown in Figure 8. This statement should already have a breakpoint set in the
provided project as denoted by the red circle in the left margin.

If another MCU is not connected or the programming operation fails, the code will hang in the
comm_timeout() subroutine. The provided project will have a breakpoint set in this routine.

11

AN1204 — VA10800 eFuse programming Application Note

478 dint main{()
479 4
480
481 | volatile wint32 t TIDO string[l2],i,k,stat, k2 ;
482
483 /% Enable clock for a1l peripherals =/
484 VOR_SYSCONFIG->FERTPHERAL CLE ENABLE = (| CLE ENABLE PORTA | CLE ENABLE PORTE | CLE ENABELE SFIA |
485 CLE_ENABLE SPIE | CLE_ENABLE SPIC |
486 CLE ENWARLE UARTAR | CLE ENABLE UARTE | CLE ENABLE I2CA |
487 CLE _ENABLE I2CE | CLE_ENABLE IRQSEL |
488 CLK ENAELE IOMGR | CLE ENABLE UIILITY | CLE ENABLE PORTIO |
489 CLE_ENABLE SYSTEM);
490
491 CONFIG TIM3(} ; // enable TIM3 - used to measure program time
492
493 WOR_TIM3->CHNI_VALUE = OxFFFEEEFF ; ff get TIM3 to reset value
494
495 Reset JTAG() : /{ assert TRSTn and move TAP statemachine to parking position
4596
497 i= OxFFFFFFFF - VOR TIM3->CNT VALUE ; // get TIM3 to reset value
498
499 TDO string[2] = SDBE_sub(32,0=00) ; // read out TAF ID # which i= available after a RESET
500
501 if (TDC =string[9] != 0x040047e3) {comm timecut (%) ; } // if not read properly, abort
502
503 TDO string[8] = S5IR_sub(%,EF TIMING) ;
504 IDO string[®] = SDR sub(26,0xE40022) ; S/ =et timing for efuse operations
505
506 atat = Read EF_ADR(16,0); f/f read 16 words starting at address 0, results are stored in EF_ADD wvalue
507
so8 | /S k2 = Prog EF BDR(0,0x1) ; // set index for EF_ID to 1 (pointing to adr 2)
509
510 | /S k2 = Prog EF ADR(2,0xF1234) ; // prog adr 2 to 0xF1234
511
512 | // k2 = Prog EF RDR(1,0x3) : ff =et index for EF CONFIG to 3 (pointing to adr 3)
513
514 | // k2 = Prog_EF ADR(3,0x81400701) : f/ prog adr 3 to config value = 0x81400701
515
51é& stat = Read EF ADR(1&,0): // read 16 words starting at address 0, results are stored in EF ADD wvalue
517
[] 518 while (1) H S/ nang here. 11 preceeding code has successfully executed.
519
520 | } S/ this i=s foot of main()

Figure 8 - Main routine from sample project

12

AN1204 — VA10800 eFuse programming Application Note TECHN ° 0GIES

5 Conclusion

This application note has explained some of the potential use cases for the eFuse array on the
VA10800 MCU. Example hardware and software was explained that can be used to program
one VA10800 from a separate REB1 development board. A user should now be able to fully
utilize the eFuse memory array on the VA10800 MCU.

6 Other Resources

Vorago VA108x0 programmers guide:
http://www.voragotech.com/sites/default/files/VA10800 VA10820 PG July2016revision1.16%

5B4%5D.pdf

Vorago MCU products: http://www.voragotech.com/vorago-products

Vorago Application notes: http://www.voragotech.com/resources

Olmex connector schematic: https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-20-
10/resources/ARM-JTAG-20-10-schematic.pdf.

1149.1-2013 - IEEE Standard for Test Access Port and Boundary-Scan Architecture:
http://standards.ieee.org/findstds/standard/1149.1-2013.html

13

http://www.voragotech.com/sites/default/files/VA10800_VA10820_PG_July2016revision1.16%5B4%5D.pdf
http://www.voragotech.com/sites/default/files/VA10800_VA10820_PG_July2016revision1.16%5B4%5D.pdf
http://www.voragotech.com/vorago-products
http://www.voragotech.com/resources
https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-20-10/resources/ARM-JTAG-20-10-schematic.pdf
https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-20-10/resources/ARM-JTAG-20-10-schematic.pdf

	1 eFuse functionality
	1.1 eFuse organization

	2 Hardware connection
	3 Procedure to read and program eFuse memory
	3.1 Reading an eFuse location
	3.2 Writing an eFuse location

	4 Running the example project
	5 Conclusion
	6 Other Resources

