
AN1204

VA10800

VORAGO VA10800 eFuse programming application note
November, 2020 Version 1.1

Abstract
The VA10800 MCU contains programmable eFuse memory that can be useful for board
identification, serialization, sensor calibration information, product life tracking or other use
cases where a relatively small amount of information is required to be permanently stored.
Boot sequence variables can also be set by the eFuse memory.

The eFuse array can only be programmed and read via the JTAG port. During the boot
sequence two 32-bit words are read from the eFuse and stored in a CPU register: EF_ID and
EF_CONFIG.

This application note provides instructions and code to use one REB1 development board to
program and read the eFuse array in a second VA10800 MCU via the standard JTAG
connection.

Table of contents
1 eFuse functionality .. 2
2 Hardware connection .. 3
3 Procedure to read and program eFuse memory .. 6
4 Running the example project .. 11
5 Conclusion ... 13
6 Other Resources ... 13

AN1204 – VA10800 eFuse programming Application Note

2

1 eFuse functionality

The eFuse memory is programmed by means of electromigration of the cobalt silicide on the
fuse as opposed to an actual rupture of the fuse. The use of the electromigration process
results in a more reliable fuse that does not rupture the fuse or the passivation and does not
potentially contaminate the chip with metal debris that is ejected from the rupture site. The

typical fusing current of a single bit and duration is 13mA for 200s. A state machine inside the
MCU programs a single bit at a time to limit the current draw.

Past space flights with different fuse type memory have shown the propensity for regrowth of
the altered polysilicon resulting in a bit reverting from a programmed “1” to a “0”. This regrowth
is attributed to an extended time with a voltage potential existing between two closely spaced
nodes in the memory cell. The VA10800 only reads the eFuse memory after a RESET.
Information from two locations are stored in registers, then the eFuse is powered down. By
limiting the time that the voltage is applied to the memory array, the chance of any regrowth is
virtually eliminated.

The VA10800 contains a 32-bit by 32-entry eFuse array. The eFuse array is read during the
RESET sequence and then turned off. Two of the 32-bit entries are stored in registers:
EF_CONFIG and EF_ID. The other locations can only be read via the JTAG interface.

The EF_CONFIG register determines the following:

- Boot SPI clock rate (bus clock divided by 2, 6, 12 or 52)
- Boot SPI memory size (4k to 128 kbytes)
- Redundant boot (reads memory twice)
- Boot delay (0-500 mSec)
- ROM read instruction code (default is 0x3 which matches most SPI EEPROM,

MRAM and FRAM memories)
- ROM address mode (16 or 24 bits, 128k memories require 24-bit addresses)

The eFuse array can be read and programmed via the JTAG interface. User code is not
directly able to either read or program the eFuse memory. This restriction was implemented to
ensure that the eFuse gate did not have a voltage potential across it for an extended time.

1.1 eFuse organization

There are 32 addresses each with 32 bits of information in the eFuse array. Addresses 0 & 1
have unique functionality and are used as index pointers to the EF_ID and EF_CONFIG fields.
Since it is impossible to change a bit from a “1” to a “0”, a unique pointer scheme is used
whereby the most significant bit that is set to a “1” determines the index value per the following
equation.

AN1204 – VA10800 eFuse programming Application Note

3

 Index pointer location = (most significant bit position with a “1”) + 2

See Figure 1 - eFuse Index pointer explanation for an illustration of this equation and an
example case.

Figure 1 - eFuse Index pointer explanation

Caution: Programming the wrong information into the eFuse array can leave the entire device
inoperative. Care should be taken to double-check the planned programmed data prior to
programming the device.

2 Hardware connection

The hardware connection from a REB1 board to another VA10800 MCU is described in this
section.

A convenient way to connect a REB1 development board to the standard 10-pin JTAG
connector is to use a commercially available assembly from Olimex (ARM-JTAG-20-10) which
retails for less than $10 USD. The standard JTAG connector is 0.05” center x 2 row. A
commonly used part is the Samtec FTSH male vertical box header- part # SHF-105-01-L-D-
TH. It is also possible to fly wire the connections or to make a custom cable for this purpose.
Keeping the cable under 6 inches in length is important for signal integrity.

AN1204 – VA10800 eFuse programming Application Note

4

Figure 2 - Olimex harness for connecting to standard 0.05" x 2 row JTAG interface

The harness plugs directly into J14 of the REB1 board for the digital signals and a separate
ground connection must be made as shown in Figure 3. Table 1 shows the connections from
the REB1 board to the Olimex cable. Note that pin 1 of J14 aligns with pin 19 of the Olimex
cable’s 20-pin header. An additional ground connection is required to have both boards at the
same potential. Figure 4 shows the Olimex cable assembly schematic.

Once the connector is in place you are ready to run software on the REB1 board to program
and read the eFuse memory. Note that both boards will require their own power source since
the JTAG interface does not have a power line.

Figure 3 – Picture of REB1 board to JTAG connector on second board

AN1204 – VA10800 eFuse programming Application Note

5

Table 1 - Connections between REB1 and JTAG connector

Figure 4 - Olimex JTAG harness schematic

Olimex 20 pin connector REB1- J14 connector Notes

Pin # Signal Pin # Signal

19 +5V 1 PORTB[10] Not used – left as input

17 NC 2 PORTB[11] Not used – left as input

15 RST 3 PORTB[12] Board with MCU being
programmed must have this

signal tied to TRSTn

13 TDO 4 PORTB[13] MCU input

11 NC 5 PORTB[14]

9 TCK 6 PORTB[15] MCU output

7 TMS 7 PORTB[16] MCU output

5 TDI 8 PORTB[17] MCU output

3 TRST 9 PORTB[18] No connect on cable; Not used –
left as input

1 VTRef 10 PORTB[19] Not used – left as input

Note: A ground connection is required between boards. We recommend using a jumper
wire from a REB1 ground pin to pin 20 of the Olimex 20-pin connector. This will minimize

the ground loop area between boards.

AN1204 – VA10800 eFuse programming Application Note

6

3 Procedure to read and program eFuse memory

The VA10800 MCU has two JTAG Test Access Ports (TAPS). They are in series as shown in

Figure 5. The first is for the standard ARM debug TAP (DBGTAP) which has a four-bit
instruction register. The second is the VA10800 test port which has a five-bit instruction
register and is unique to the device. The second TAP contains the interface to the eFuse
block.

Figure 5 - Serial Test Access Port connections

To not have TAP1 interfere with communications to TAP2, we will always send four zeros to
the TAP1 instruction register. This keeps TAP1 in bypass mode. For example, to select the
instruction register 0x17 of the VA10800 TAP, we would send nine bits on TDI to the JTAG
instruction register. The first four bits would be zeros and the last five would be 0x17 or
%10111. Note that the JTAG convention is to shift the least significant bit out first so a logic
analyzer would show %111010000 for this transaction.

Section 5 of the VA10800 programmers guide has details on the eFuse read and programming
steps as outlined in the following two sections.

3.1 Reading an eFuse location

The following steps must be taken to properly read eFuse memory. Each of these steps is
conducted by first shifting data to the instruction register (SIR) followed by either a read or
write of the associated data register via the shift data register (SDR) command. Data registers
have variable length and it is only required to shift the number of bits implemented. As shown

AN1204 – VA10800 eFuse programming Application Note

7

in Figure 6, the software accompanying the application note has comments to make it easy to
follow the steps being taken.

a) Load EF_WDATA register with 0 (Clear Test Read Data)

b) Load EF_ADDR register with the desired read address (Load Address)

c) Load EF_CMD registers with 0x1 (Interface Enable)

d) Poll/Read EF_STATUS for Bit 0 being 1 (Oscillator is running)

e) Load EF_CMD registers with 0x5 (Issue Read Command)

f) Read EF_RDATA register (Result of EFuse read)

g) Load EF_CMD registers with 0x0 (Interface Disable)

AN1204 – VA10800 eFuse programming Application Note

8

Figure 6 - Subroutine to read eFuse memory

AN1204 – VA10800 eFuse programming Application Note

9

3.2 Writing an eFuse location

Similar to reading an eFuse location, a set of steps must be taken to program eFuse memory.
As shown in Figure 7, the software accompanying the application note has comments showing
each step to make it easy to follow the process.

a) Load EF_ADDR register with the desired write address (Load Address)

b) Load EF_WDATA register with data (Load Data)

c) Load EF_TIMING register with proper timing data

d) Load EF_CMD registers with 0x3 (Interface Enable with Write Mode)

e) Poll/Read EF_STATUS for Bit 0 being 1 (Oscillator is running)

f) Bring EFUSE_WRITE_ENn pin low (Enable Write)

g) Load EF_CMD registers with 0x7 (Issue Write Command)

h) Poll/Read EF_STATUS register for Bit 1 being 0 (Check/Wait for write complete)

i) Bring EFUSE_WRITE_ENn pin high (Disable Write)

j) Load EF_CMD registers with 0x0 (Interface Disable)

k) Do eFuse Read procedure to verify result

Note: Steps f and i are not implemented in software since there is a jumper on the board that

is being programmed. It is possible to read the eFuse memory with the EFUSE_WRITE_ENn

pin in either state. There is no need to stop the program after step h to remove the jumper

controlling the EFUSE_WRITE_ENn pin.

AN1204 – VA10800 eFuse programming Application Note

10

Figure 7 - Subroutine to program eFuse memory

AN1204 – VA10800 eFuse programming Application Note

11

4 Running the example project

The example code was developed in the Keil MDK environment. Please follow the instructions
in the REB1 User’s manual to install the IDE and the Vorago Pack file. Once that is done,
simply click on the project file called “JTAG_va108xx.uvprojx”.

The main routine as shown in Figure 8, has a call to read the first 16 words of eFuse array and
store the data in an array “EF_ADD_value[]”. The sample project will already have a memory
window active showing this array. The calls to program the eFuse on lines 508 - 514 have
been commented out to prevent inadvertent writes to memory. When the locations and
contents have been determined, remove the “//” at the beginning of these lines and modify the
address and data values. Then run the program.

If the program and / or read operation is successful, the code will hang at a while(1) statement
on line 518 as shown in Figure 8. This statement should already have a breakpoint set in the
provided project as denoted by the red circle in the left margin.

If another MCU is not connected or the programming operation fails, the code will hang in the
comm_timeout() subroutine. The provided project will have a breakpoint set in this routine.

AN1204 – VA10800 eFuse programming Application Note

12

Figure 8 - Main routine from sample project

AN1204 – VA10800 eFuse programming Application Note

13

5 Conclusion

This application note has explained some of the potential use cases for the eFuse array on the
VA10800 MCU. Example hardware and software was explained that can be used to program
one VA10800 from a separate REB1 development board. A user should now be able to fully
utilize the eFuse memory array on the VA10800 MCU.

6 Other Resources

Vorago VA108x0 programmers guide:
http://www.voragotech.com/sites/default/files/VA10800_VA10820_PG_July2016revision1.16%
5B4%5D.pdf

Vorago MCU products: http://www.voragotech.com/vorago-products

Vorago Application notes: http://www.voragotech.com/resources

Olmex connector schematic: https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-20-
10/resources/ARM-JTAG-20-10-schematic.pdf.

1149.1-2013 - IEEE Standard for Test Access Port and Boundary-Scan Architecture:
http://standards.ieee.org/findstds/standard/1149.1-2013.html

http://www.voragotech.com/sites/default/files/VA10800_VA10820_PG_July2016revision1.16%5B4%5D.pdf
http://www.voragotech.com/sites/default/files/VA10800_VA10820_PG_July2016revision1.16%5B4%5D.pdf
http://www.voragotech.com/vorago-products
http://www.voragotech.com/resources
https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-20-10/resources/ARM-JTAG-20-10-schematic.pdf
https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-20-10/resources/ARM-JTAG-20-10-schematic.pdf

	1 eFuse functionality
	1.1 eFuse organization

	2 Hardware connection
	3 Procedure to read and program eFuse memory
	3.1 Reading an eFuse location
	3.2 Writing an eFuse location

	4 Running the example project
	5 Conclusion
	6 Other Resources

