
AN1209

VA10800/VA10820

VORAGO VA108x0 UART programming application note

May 17, 2017 Version 1.0

Abstract

One of the oldest and still most popular serial interfaces is the UART (Universal
Asynchronous Receive Transmit) interface. The VORAGO UART allows for high speed (up
to 2 Mbps) communications with minimal CPU overhead. The flexible interrupt sources and
the two 16-byte FIFOs reduce CPU intervention for most strings of characters. This
application note provides guidance on using the UART control block. The VA108x0
evaluation board’s BSP (board support package) comes with UART drivers included and
lower level drivers accompany this document in the form of a compressed file,
AN1209_SW.7z.

Table of Contents

1 Introduction to the UART interface ... 1
2 VORAGO UART block overview ... 4
3 Examples ... 9
4 Conclusions ... 18
5 Common questions and issues ... 18
6 Other Resources .. 20

1 Introduction to the UART interface

The first UART circuits were designed around 1970 by DEC for their PDP line of computers.
It was intended to be a point to point communication protocol with a minimal number of
wires. When personal computers first hit the scene around 1985, each had several UART
based RS-232 interfaces to connect to peripherals. Since then, nearly all microcontrollers
come equipped with UARTs to allow easy connection to either other boards or in some
cases, to other ICs on the same board. Ironically, most PCs stopped including UART
interfaces around 1990 in favor of USB with smaller cables and faster data rates.

The UART standard provides flexibility in five areas:

AN1209 – VA108x0 UART Application Note Rev 1.0

2

i) number of characters,
ii) bit rate,
iii) number of stop bits
iv) use of parity and
v) flow control (a.k.a. handshaking)

Flow control is not commonly used and is assumed not present unless expressly called out.
One of the most common settings is 9600 baud (104.2 microseconds/bit), 8-bits of data,
with no parity and a single stop bit. This is sometimes shortened to: 9600 8N1 or
9600,8,N,1.

While both Tx and Rx sides need fairly accurate clock references for reliable
communications, the standard does allow for transceiver wave shaping and clock
inaccuracy. See Figure 1. The receiving state-machine samples each bit a number of times,
quite often 16, but only relies on samples in the middle of each bit to determine a “1” or
“0” value. In the below example, the samples used are 7 – 9. If these three samples are
not the same or if a stop bit is not detected, a framing error will be triggered.

Due to the STOP bit and START bit being opposite polarities, there will always be a signal
transition at least every 9-bits regardless of the data value. Depending on the receiver
sampling implementation, a transmitter to receiver timing mismatch of approximately 3% can
be tolerated without an error occurring.

AN1209 – VA108x0 UART Application Note Rev 1.0

3

Figure 1 - UART bit sequence and individual bit timing diagram

Flow control can be handled with dedicated hardware signals RTS (ready to send) and CTS
(clear to send) or by sending special ASCII flow control characters XOFF (pause
transmission) and XON (resume transmission). See Figure 2 for implementation of flow
control using a Null modem

Figure 2 - Null modem connection between two UART nodes. CTS and RTS are only needed
when using hardware handshaking.

ASCII (American Standard Code for Information Interchange) coded information is required
for XOFF/XON flow control to be used. ASCII assigns an 8-bit number for standard
keyboard entries (A-Z, a-z, 0-9, carriage return, punctuation marks and special characters).
Many UART protocols are based on ASCII characters which allows the use of the Null
character (0x00) to separate different messages or character strings.

UART	bit	timing

TX

EACH	BIT	SAMPLED	AT	POINTS	7,	8	AND	9.		IF	THESE	ARE	ALL	
NOT	THE	SAME,	A	FRAMING	ERROR	IS	FLAGGED.	

Bit	0 Bit	1 Bit	2	 Bit	6 Bit	7start

Bit	0

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16

STOP	bit	

sample sample

Node	1	

RX

TX

CTS

RTS	

Node	2	

RX

TX

CTS

RTS	

AN1209 – VA108x0 UART Application Note Rev 1.0

4

The UART block on an MCU only supports the digital encoding and decoding of messages.
Electrical signaling levels such as transceivers for RS-232, LIN or RS-485 are handled by a
separate driver circuit external to the UART controller. The LIN (local-area-network) bus
protocol is popular in automotive applications and is based on UART. LIN allows one
master node and several slave nodes on the same bus. LIN requires a 13-bit break
character. If the transmit line is held in the logic low condition for longer than a character
time of 10-bits, this is a break condition that can be detected by the UART.

A related peripheral, USART (universal synchronous/asynchronous receiver/transmitter)
supports both asynchronous and synchronous operation. The VA108x0 only supports
asynchronous communication with no shared clock between devices.

2 VORAGO UART block overview

The full description of the block can be found in the VA10800/VA10820 Programmers
Guide. This section provides supplemental information on how to use the block in a final
application. A block diagram of the UART is shown in Figure 3. There are separate receive
and transmit engines which allow full duplex communications.

AN1209 – VA108x0 UART Application Note Rev 1.0

5

Figure 3 – VORAGO UART block diagram

There are two identical UART blocks on both the VA10800 and VA10820. The signals
associated with these blocks are available on several different pins. The function select
register (FUNSEL) in the IOCONFIG module determines which port pins have which
functions assigned to them.

Status/Control

A
P
B

B
U
S

I
N
T
E
R
F
A
C
E

Status	Reg

Status/Control/IRQ
Logic

Transmit
FIFO
16x8

CLOCK	DIV	
Reg

Receive
FIFO
16x8

UART	PinsIO
Intf

Tx

Rx

BAUD	CLK
Generator

Control	Reg

IRQ	Reg

RX
TX
CTS
RTS

IRQ

DATA	
Reg

AN1209 – VA108x0 UART Application Note Rev 1.0

6

2.1 Register summary

Name Description Overview and Use
DATA FIFO entry point for both Tx

and Rx
This address is the CPU access point to the
Transmit and Receive FIFOs.

ENABLE Separate enable bits for Tx
and Rx

Often the Rx enable is set and never cleared.
This allows characters to be received at any
time. Conversely, the Tx enable is normally set
when data has been loaded in the FIFO and is
ready for transmission.

CTRL Configures the data format
parameters and loopback
mode

Parity, STOP bit length, word size and flow
control are set.

CLKSCALE Establishes baud rate Fine granularity is provided with separate
integer and fractional fields.

RXSTATUS Contains 11 status bits on Rx
data

Used to process information in FIFO and to
handle overflow, framing and parity error
conditions. Can be polled or read in ISR.

TXSTATUS Contains 5 status bits on Tx
data

Used to determine when to load more data
into the Tx FIFO. Can be used as overflow
error indicator.

FIFO_CLR Clears status bits and FIFO Used to clear error status flags and to empty
Rx and Tx FIFO

TXBREAK Sets the length of a break
character

Some protocols such as LIN requires specific
lengths to the break character

ADDR9 Enables 9-bit mode and
contains match address

Used only for 9-bit mode which allows the
parity bit to determine the if incoming
information is an address or data

ADDR9MASK Determine which bits of data
in ADDR9 are used.

Allows more than one address to be used for
matching.

IRQ_ENB Enables one of 8 interrupt
sources.

Works in conjunction with Status register to
determine when the UART triggers an interrupt.

IRQ_RAW Unqualified access to all
interrupt source status bits

Normally only used for debug purposes to
determine what has just happened

IRQ_END Provides status of all enabled
interrupt sources

The UART OR’s all interrupt sources together
and has one interrupt output to the NVIC.
Inside the UART ISR, this register needs to be
interrogated to determine which individual
interrupt sources are active.

IRQ_CLR Clears interrupt status
information

Only can be used with overflow and error
conditions.

AN1209 – VA108x0 UART Application Note Rev 1.0

7

2.2 UART block functional partitioning:

Each of the functional blocks of the UART module are briefly described in this section.

§ Baud rate generator: The UART bus clock (16x or 8x the baud rate) is created with
two pieces: a) a divisor of the system bus clock and b) a fractional portion of divisor.
This allows very accurate baud rates to be created for most every CPU clock and
baud rate combination.

§ Status and control registers: A set of registers is provided to configure the block and
to monitor the status during transactions. The most notable settings are:

o Number of data bits
o Parity use
o Number of stop bits
o Flow control
o Interrupt enable

§ Interrupt logic: Interrupt requests to the CPU can be generated when they are
enabled and the event occurs such as a FIFO being full or empty. The full list of 8
interrupt sources is shown here.

o Receiver FIFO half full (IRQ_RX)
o Receiver Status Conditions (IRQ_RX_STATUS)
o Receiver timeout (IRQ_RX_TO)
o Matched address in 9-bit mode (IRQ_RX_ADDR9)
o Transmit FIFO half empty (IRQ_TX)

RXFIFOIRQTRG Determines when the FIFO
depth will trigger an interrupt

Can be used to reduce number of interrupts for
received data if the packet size is greater than
one. If single character input must be
responded to, this has limited use.

TXFIFOIRQTRG Determines when the FIFO
depth will trigger an interrupt

Can be used to greatly reduce the CPU
overhead for transmitting blocks of data. If
only transmitting single characters, it has
limited use.

RXFIFORTSTRG Determines when RTS signal
triggers based on Rx FIFO
depth

Only used when hardware flow control is
active.

STATE Reports state of Rx and Tx
state machines and FIFOs

Used during code development and debug
only.

PERID Peripheral ID Can be used to customize code when future
UART from Vorago are available.

AN1209 – VA108x0 UART Application Note Rev 1.0

8

o Transmitter Status conditions (IRQ_TX_STATUS)
o TX FIFO empty (IRQ_TX_STATUS)
o Transmitter interrupt when CTS changes value (IRQ_TX_CTS)

2.3 MCU interrupt path

For an interrupt source to halt normal program flow, a path for it to get to the CPU
must be configured via software. As shown below, the UART has 8 interrupt
sources that are OR’ed together and tied to the IRQ Selector peripheral. The IRQ
Selector peripheral has resources to route the >100 interrupt sources on the MCU
to one of the 32 NVIC (nested vectored interrupt controller). The NVIC is part of
the ARM core complex and can halt regular code execution and force a vector to
be fetched and an interrupt subroutine (ISR) to be executed.

Figure 4 - Path for UART interrupt sources to CPU

2.4 Debug specifics

Understanding how the part works when a debugger is attached is important to comprehend UART
behavior. When stopping and starting code execution, most debug probes stop the CPU and then
read each register. This can unexpectedly take information from the FIFO. Subsequent code
execution will not be able to recover that data.

The peripheral continues to run even when the CPU has been halted by the debugger. It is possible
to transmit a character by writing to the DATA register after the enable bit and peripheral select
register was setup. Conversely, once the receive function is enabled, the FIFO will continue to be
filled as data is applied to the Rx pin. Receive overflow conditions can occur when the CPU is halted
and new data is applied to the Rx pin.

Whenever starting and stopping CPU execution, take the information from the above two
paragraphs into account.

IRQ_RX
IRQ_RX_STATUS

IRQ_RX_TO
IRQ_RX_ADDR9

IRQ_TX
IRQ_TX_STATUS	
IRQ_TX_STATUS	

IRQ_TX_CTS

NVIC
4	priority	levels

CPU	

Each	interrupt	 source	has	a	separate	enable	bit	

IRQ	Selector	
peripheral

PORTA[0]
.
.PORTA[31]
.
PORTB[23]
SPIA
SPIB
SPIC
UARTA
UARTB
I2CA
I2CB
.
TIM0
.
TIM23

IRQ0
.
.
.
.
.
.
.
IRQ31

IRQ0
.
.
.
.
.
.
.

IRQ31

AN1209 – VA108x0 UART Application Note Rev 1.0

9

3 Examples

The following sections provide example software programs to setup and operate the UART
block. They grow in complexity sequentially. The code is intended to be run on the REB1
evaluation board. Table 1 provides a summary of the pins used and how to access them on
the REB1 evaluation board.

Table 1 - UART pin assignments and REB1 evaluation board access points

Pin Name UART function Function Sel Value REB1 access point
PORTA8 UARTA-RX 2 J10-8
PORTA9 UARTA-TX 2 J10-7
PORTB20 UARTB-RX 1 J14-11
PORTB21 UARTB-TX 1 J14-12

Place jumper between PORTA9 and PORTB20 for UARTA to transmit to UARTB

3.1 UART peripheral initialization

Out of RESET, the block is disabled and all registers are set to their default value. Prior to
writing any UART registers, the clock must be enabled in the System Configuration
Peripheral -> Peripheral Clock Enable CTRL register.

The pins used for the UART functions are multiplexed with GPIO and other peripherals. They
default to the GPIO function. The function select field (FUNSEL) in IO Configuration
(IOCONFIG) peripheral must be setup for each UART pin. The IOCONFIG also has pin
filters (FLTTYPE) available. By default, the filter is turned off and each pin is synchronously
sampled every clock cycle. For systems with slow changing inputs on the Rx pin, it is
advised to turn the filtering on so that a pin is sampled high or low several times before the
UART module receives the high / low signal.

The baud rate must be set in the CLKSCALE register. The programmer’s manual has a
convenient table to reference for 50 MHz operation which is what the evaluation board has.
The provided SW automatically calculates this value.

For this example, Hand shaking (flow control) and parity are not used. If they were, fields
would need to be set in the UART CTRL register.

Summary of steps to setup the UART module

AN1209 – VA108x0 UART Application Note Rev 1.0

10

1. Enable peripheral clocks in SYSCONFIG->PERIPHERAL_CLK_ENABLE
2. Configure GPIO pins for the Rx and Tx function in IOCONFIG peripheral.
3. Configure the UART block

a. Set UART clock generator CLKSCALE register
b. Clear both Rx and Tx FIFO in the FIFO_CLR register
c. Set operating parameters in the CTRL register and
d. Enable the Tx and/or Rx engines in the ENABLE register

At this point, the module is ready to transmit or receive information.

Example code to show a single UART initialization is shown in Figure 5. UARTA will be
used to transmit and UARTB will be used to receive. Note that the module is not enabled in
this code. The enable step is performed in the main routine after other subsystems are
initialized.

Figure 5 - UART initialization code example

3.2 UART Transmit

Different strategies can be used depending on the number of bytes to transmit, the other
tasks of the processor and baud rate relative to the bus frequency. For instance, if all
transmit blocks will be under 16-bytes, it is probably best not to use interrupts and just load
the FIFO and let the UART stream the data out. However, if large amounts of data, say
over 100 bytes need to be sent in each block transfer, implementing an interrupt based

AN1209 – VA108x0 UART Application Note Rev 1.0

11

system with a buffer and data pointer is recommended. If there are no other high priority
tasks, it is possible to use a polling method to service the UART as more data needs to be
loaded in the FIFO.

A basic example with a very small software buffer is shown in this section. A more complex
interrupt driven transmit example with a RAM based buffer is shown in section 3.5

Summary of steps:

1. Initialize module as shown in last section
2. Load FIFO with data
3. Start transmitting by setting the Tx enable bit.

Figure 6 - UART transmit example code

3.3 UART receive operation.

Receive operations are like the transmit operation except instead of writing to the Tx FIFO
before the transaction, the received data is pulled from the Rx FIFO after the transaction is
complete.

Steps to setup the module

1. Initialize UART block as shown in section 3.1
2. Enable reception by setting the Rx enable
4. Periodically check the RDAVL bit to see if data has been received.

a. Although not necessary it is a good idea to check for framing errors
5. If RDAVL is set, read the DATA register,
6. Repeat step 5 until RDAVL is not set

A short code example to perform these steps is shown here.

AN1209 – VA108x0 UART Application Note Rev 1.0

12

Figure 7 - Example code for UART Rx

3.4 Using example code from 3.2 and 3.3 on REB1 board.

The code from the previous two examples is meant to work in conjunction. By placing a
jumper wire between J10-7 and J14-11, UARTA_Tx is connected to UARTB_Rx. The
software project in the accompanying AN1209_SW.7z file has defines and conditional
includes. This allows both the simple and interrupt driven routines to be placed in the same
reb_main.c file. Please make sure that line 32 is not commented out and that line 33 is
commented out. The compiler will include the “simple_Rx_Tx” sections and ignore the
“Int_Rx_Tx” sections.

Compile, download and run the program. After a second or so, stop the code execution
and open a memory window in the debugger to show “UARTB_Rx_Buffer. Display the
information in ASCII format and you should see something like Figure 8.

AN1209 – VA108x0 UART Application Note Rev 1.0

13

Figure 8 - Screen capture of Keil IDE showing Rx buffer in a memory window.

3.5 Interrupt driven string transmission

Most UART applications are interrupt driven. This will limit wasted CPU bandwidth waiting
for an event to occur. This section provides information on how to setup the MCU to allow
interrupt driven actions to transmit a buffer loaded with ASCII information.

3.5.1 Circular buffer concept

A commonly used structure with serial interfaces is a circular buffer. This allows one
software task to load the buffer and another task to unload it when an event occurs. The
task for loading the buffer uses a “tail pointer” as an index into the buffer. The task reading
the buffer uses a “head pointer” to track the last location it has written. The graphic in
Figure 9 explains the concept further.

AN1209 – VA108x0 UART Application Note Rev 1.0

14

Figure 9 - Circular buffer explanation

The appropriate size of a buffer is dependent upon: a) baud rate, b) interval the software
can process buffer data, and c) message length and interval. The below table provides the
maximum bytes that could be sent or received for common baud rates and loop intervals.

Table 2- Maximum number of bytes transferred for various baud rates and intervals.

3.5.2 MCU configuration for UART Tx interrupts

Steps to setup the module for generating interrupts on a FIFO half empty condition
1. Initialize the UART block as described in section 3.1.
2. Set the FIFO half empty trigger level (default is 8)
3. Set the IRQ_Tx bits in the IRQ_ENB register
4. Assign the UART interrupt to an NVIC input (input 17 is used for this example) in the

IRQSEL block.

8-entry	Circular	buffer	implementation	for	receiving	UART	information

0 blank

1 blank

2 blank

3 blank

4 blank

5 blank

6 blank

7 blank

Tail	
pointer

Head	
pointer

Notes:	
1. Tail	pointer	always	points	 to	next	location	to	place	incoming	data.
2. Head	Pointer	always	points	to	first	unread	data	in	buffer.
3. ISR	uses	tail	pointer	to	track	where	to	store	data
4. Main	routine	uses	 head	pointer	to	read	data	from	the	buffer	
5. Head	pointer	can	never	lead	tail	pointer
6. Both	pointers	roll	over	to	zero	when	they	reach	the	buffer	size	value.		
7. Overflow	errors	occur	if	the	tail	pointer	increments	to	a	value	equal	to	the	head.	

0 MSG1-1

1 MSG1-2

2 MSG1-3

3 MSG1-4

4 NULL

5 blank

6 blank

7 blank

0 MSG2-4

1 MSG2-5

2 null

3 MSG1-4

4 NULL

5 MSG2-1

6 MSG2-2

7 MSG2-3

Head	
pointer

Head	
pointer

Tail	
pointer

Tail	
pointer

0 MSG1-1

1 MSG1-2

2 MSG1-3

3 MSG1-4

4 NULL

5 blank

6 blank

7 blank

Head	
pointer

Tail	
pointer

After	initialization After	first	message	received After	first	message	
processed

After	second	message	
received.	(circled	back	
around	to	first	entry)

Baud	Rate 10msec 100msec 1	sec	
9600 9.6 96 960
115200 115.2 1152 11520
1000000 1000 10000 100000

Buffer	Check	interval

AN1209 – VA108x0 UART Application Note Rev 1.0

15

5. In the NVIC, set priority level of IRQ17 and enable interrupts on the NVIC OC17.

Example code is shown Figure 5. See the section near the bottom beginning with “#ifdef
AN_int_Rx_Tx”.

To demonstrate the receive implementation described in the next section handles all
message lengths, this transmit example increments the transmit string length by 1 until it
reaches the maximum value. The code to setup the transmission is shown in Figure 10 and
the ISR code is shown in Figure 11. The project AN1209_SW.7z has all this code also.

Figure 10 - Example code for initiating an interrupt driven buffer transmission

Figure 11 - Interrupt service routine to load transmit FIFO from previously filled buffer.

3.6 Interrupt driven receive operation

Several receive interrupt sources are available and several software strategies can be used.
One of the most common strategies for receiving information that is randomly spaced and
with random length is twofold: 1) handle the heavy lifting (receiving lots of data in a short
interval) with an interrupt and 2) check for remnants (small number of data bytes in the
FIFO) periodically in one of the control loops.

AN1209 – VA108x0 UART Application Note Rev 1.0

16

The receive interrupt source for this example is the FIFO half full condition. The half full level
is set to 12. The ISR will empty the FIFO using the RDAVL flag to determine when it is
empty. Figure 12 shows example code for the Rx ISR. Until there are 12 bytes on
information in the FIFO, no interrupt will occur. This could cause a stall or long delay in
processing the information if the main routine does not periodically check the RAVL flag to
see if there is any FIFO data available. Figure 13 shows example code for checking the Rx
FIFO and processing the Rx buffer data. This code is executed every 10 msec.

Figure 12 - Interrupt service routine to move data from Rx FIFO into buffer

Figure 13 - Example code to check Rx FIFO and to process data in the Rx buffer.

3.6.1 MCU configuration for UART Rx interrupts

Steps to setup the module for generating interrupts on a FIFO half empty condition
1. Initialize the UART block as described in section 3.1.
2. Set the FIFO half full trigger level to 1 (default is 8)

AN1209 – VA108x0 UART Application Note Rev 1.0

17

3. Set the IRQ_Rx bit in the IRQ_ENB register
4. Assign the UART interrupt to an NVIC input (input 18 is used for this example) in the

IRQSEL block.
5. In the NVIC, set priority level of IRQ18 and enable interrupts on the NVIC OC18.

Example code is shown in Figure 14.

Figure 14 - Example code for configuring MCU for UART Rx interrupts

3.7 Using example code from 3.5 and Error! Reference source not found. on REB1

board

The code examples from the previous two examples are meant to work in conjunction. By The code examples from the previous two examples are meant to work in conjunction. By
placing a jumper wire between J10-7 and J14-11, UARTA_Tx is connected to UARTB_Rx.
The software project in the accompanying AN1209_SW.7z file has defines and conditional
includes. This allows both the simple and interrupt driven routines to be placed in the same
reb_main.c file. Please make sure that line 33 is not commented out and that line 32 is
commented out as shown in Figure 15.

Figure 15 - Compiler directive to use interrupt driven, "AN_Int_Rx_Tx" example code.

AN1209 – VA108x0 UART Application Note Rev 1.0

18

Figure 16 - Example code showing conditional inclusion of "AN_Int_Rx_Tx" implementation

Compile, download and run the program. After a second or so, stop the code execution
and open a memory window in the debugger to show “uartTxBuf” and uartRxBuf”. Display
the information in ASCII format. It should be similar to what is shown in Figure 17.

Figure 17 - Memory Window inside debugger showing Rx Buffer starting at 0x10000708
and Tx Buffer starting at 0x10000808

4 Conclusions

The VORAGO UART block has many options and a 16-word FIFO that makes it very flexible
and capable of very efficient transaction management for a wide variety of UART message
transfers and protocols. VORAGO has provided several forms of software drivers to utilize
the UART peripheral.

This application note has provided several example operations for reading and writing to
different UART devices using both polling and interrupt driven methods. You should be able
to quickly adapt one of these examples to fit your application needs.

5 Common questions and issues

1. Can I invert the polarity of the Rx and Tx signals?

a. Yes, via the IO configuration register (bit name = INVOUT). This is in the IO
Configuration peripheral which is separate from the UART module.

AN1209 – VA108x0 UART Application Note Rev 1.0

19

2. Can I create differential physical layers like RS422?
a. Yes, but this requires a separate hardware transceiver.

3. Is it possible to build a multipoint drop system like RS485?
a. Yes, with appropriate software control. The UART peripheral does not have

the capacity for addressing and disabling Tx built in.
4. How do you control color of terminal screen characters?

a. Color monitor and terminal windows use special ASCII characters to control
color. Here is a list of commands that can be embedded in a printf statement
to set color.

i. ANSI_COLOR_RED “\x1b[31m”
ii. ANSI_COLOR_GREEN “\x1b[32m”
iii. ANSI_COLOR_YELLOW “\x1b[33m”
iv. ANSI_COLOR_BLUE “\x1b[34m”

5. Can you provide recommendations on when and when not to use pin filtering?

a. Anytime an input signal has a rise or fall time > 5 MCU clock cycles is a good
time to use pin filtering to remove potential glitches as the input switches states.

6. My code sets up all the UART registers but nothing comes out the port pin when a
character is transmitted. What is going on?

a. This most likely is caused by one of two things:
i. The peripheral clock for the UART not being enabled
ii. The port pin not being set to the UART function in the Function Select

register.
7. I can see data at the output of my transmitter but the receiver never responds. What

can be going wrong?
a. This quite possibly is a problem with the Rx and Tx lines not being cross wired.

The transmitter (TX1) of one device is connected to the receiver (RX2) of the
other device. Similarly, RX1 is connected to TX2. See the null modem diagram
in section 1.

8. Does the VA108x0 have support for DMA transfers with the UART?
a. No. The VA108x0 does not have a DMA engine.

9. How can I send 9-bit wide data if the FIFO is only 8-bits wide?
a. 9-bit mode uses the 9th bit to designate the 8-bit transfer is either an address or

data. For transmitting, parity (PAREN = 1) and manual parity (PARMAN=1)
must be enabled. The DPARITY bit in the data register must be set for each
character loaded into the FIFO.

AN1209 – VA108x0 UART Application Note Rev 1.0

20

6 Other Resources

VORAGO VA108x0 programmers guide & VORAGO MCU products:
http://www.voragotech.com/VORAGO-products

VORAGO Application notes: http://www.voragotech.com/resources

VORAGO VA108xx REB1board user guide: Part of Board Support Package (BSP)
http://www.voragotech.com/products/reb1

LIN sub-bus specification: https://www.iso.org/standard/61229.html

Revision log:

May 18, 2017 – Initial release

