
AN1217

VA10800/VA10820

VORAGO VA108x0 Boot Memory Robustness Improvement
Application Note
July 2019 Version 01.0

Abstract

For systems relying on an external memory from which to boot, there exists a single point
failure mechanism that could shut down the system. This application note provides
demonstrated methods for improving the response to memory corruption and Single Event
Functional Interruption (SEFI) errors.

Memory corruption in instruction code space can be detected via software and an
alternative code space used. This effectively halves the available code space but can
provide a straightforward method to address a small number of errors.

SEFI errors may place the memory in a non-functional state such that neither reads nor writes
are possible but no actual memory corruption occurs. This normally requires the power to be
cycled to resume normal operation. SEFI is a special case of Single Event Upset (SEU)
changing an internal control signal. Adding a few components to the board can allow the
memory to be powered off when not in use thereby greatly minimizing the exposure to SEFI
errors.

Table of Contents

1 Memory corruption detection and response .. 1
2 Steps to install the Bootloader with CRC ... 6
3 Avoiding Single-Event-Functional-Interrupts ... 13
4 Conclusions .. 14
5 Other Resources ... 14

1 Memory corruption detection and response

The likelihood of a space grade memory becoming corrupt is very remote, but still investors
of multi-million-dollar spacecraft want the most reliable systems possible. One potential error
in NVM components is a single bit error where the transistors or storage element for a single
bit become damaged or weaken over time. Some memories have built-in Error Code

AN1217 – VA108x0 Boot Memory Robustness Improvement

2

Correction (ECC) to address any single bit errors. From an MCU perspective, detecting this
type of error is commonly done with software running a cyclical-redundancy-check (CRC) on
a portion of the memory. The CRC can detect only that an error occurred; it does not have
the data to correct the error.

Sections 1 & 2 detail a bootloader to conduct the memory check and use an alternative
code image if an error is found.

1.1 VA108x0 Boot process
The VA108x0 MCU will always boot from an external SPI memory for resets caused by
power-on reset (POR) and pin reset events. Memory is read 32 bytes at a time. Two reads
of the 32-byte block are made and compared against each other. If the blocks are not
equal, the whole process begins again starting at address 0x00. This check is mainly for
electrical noise corrupting the SPI data transfer but can also capture NVM bits that are
partially programmed. If the two reads of the 32-byte block are equal, the internal SRAM of
the device is written with this information and the process continues until all 128 Kbytes are
loaded. The address map of the NVM and the MCU are identical.

The VA108x0 MCU can be configured in software to react to a software initiated reset
differently than a POR or pin reset. The alternate boot sequence does not load memory from
the SPI NVM and immediately starts to execute code from on-chip SRAM . We will use this
functionality with the bootloader explained in the next section.

The Cortex-M0 does not support vector redirection but because the instruction space and
vector information are located in SRAM, rewriting vector information is possible. This
functionality is used in the CRC bootloader.

1.2 Bootloader with CRC
Having a separately calculated CRC for different portions of memory allows for a redundant
image to be used if the primary image is corrupt. This application note introduces a method
of having two user code images that are checked with a CRC algorithm located in a
common “bootloader” program. This method is a variant of the bootloader detailed in
AN1216. This approach is still vulnerable to a single corrupt bit in the bootloader section
causing issues that prevent normal code execution. However, the vulnerable memory space
of a single byte causing problems is reduced from 128 Kbyte to less than 4 Kbyte.

The basic flow of the bootloader project is shown in Figure 1. Note that the VA108x0 can
be configured via software to not reload memory from the SPI NVM for software-initiated
resets. This allows the vector table to be overwritten by software and a different set of

AN1217 – VA108x0 Boot Memory Robustness Improvement

3

actions to take place from a POR or external pin reset. The provided project will use image
A if the CRC of the bootloader fails. This may not be the preferred way of handling an error.
Figure 2 shows a slightly modified flow that a user can implement with an error message
being reported if the bootloader CRC fails.

Figure 1 - Flow chart of memory coherency check and associated actions based on the CRC
results (this is the example project implementation)

Figure 2 - Flow chart with conceptual implementation of signaling error if any CRC fails

For the above flowcharts to work, three separate images must be created and programmed
into the device. Two images will be created from the same user code project, but the linker
target memory must be uniquely set as shown in Figure 3 and

RESET (POR
or External)

Run CRC on
Bootloader

Run CRC on
Image A and

Image B

Image
A

good?

Image
B

good?

Signal
Error to
other

systems

Move “A” Vector
table info &
perform soft

reset

Move “B”
Vector table info
& perform soft

reset

BL
good?

No

Yes No No

Yes Yes

RESET (POR
or External)

Run CRC on
Bootloader

Run CRC on
Image A and

Image B

Image
A

good?

Image
B

good?

Signal
Error to
other

systems

Move “A” Vector
table info &
perform soft

reset

Move “B”
Vector table info
& perform soft

reset

BL
good?

No

Yes No No

Yes Yes

AN1217 – VA108x0 Boot Memory Robustness Improvement

4

 shows the memory map of the VA108x0 and SPI NVM during the process. The NVM is
programmed with three images and three 16-bit CRC characters will be stored during the
programming steps.

Figure 3 - Keil MDK Option page showing IROM1 space information

Figure 4 - Table with IROM1 start and stop values for each image

Start Address Size Size CRC location
(Hex) (Decimal)

Bootloader 0x0000_0000 0x1FFD 8189 0x0000_1FFE
Image A 0x0000_2000 0xEFFD 61437 0x0001_0FFE
Image B 0x0001_1000 0xEFFD 61437 0x0001_FFFE

AN1217 – VA108x0 Boot Memory Robustness Improvement

5

Figure 5 - Memory map with three images shown. Top portion has Image A valid. Bottom
portion has Image A corrupt

1.3 Key Features of the VA108x0 CRC Bootloader

A Keil MDK project accompanies this application note with code to implement a CRC
bootloader with the following features:

a. Small code size < 8 Kbytes (Customer can reduce this to under 1 Kbyte by
eliminating reprogramming and terminal window support)

b. UART interface for easy connection to a PC or other MCU
c. CRC checking on three separate memory ranges
d. Reprogramming support via terminal window
e. Open source
f. No security implementation

Address FRAM contents Address MCU SRAM contents after initial boot Address

MCU SRAM contents after Image A has been
found to be correct, portion of memory
moved and a software reset issued.

0x0001_FFFE Image B CRC value 0x0001_FFFE Image B CRC value 0x0001_FFFE Image B CRC value

0x0001_1000 0x0001_1000 0x0001_1000
0x0001_0FFE Image A CRC value 0x0001_0FFE Image A CRC value 0x0001_0FFE Image A CRC value

0x0000_2000 Image A Vector Space 0x0000_2000 Image A Vector Space 0x0000_2000 Image A Vector Space
0x0000_1FFE Bootloader CRC value 0x0000_1FFE Bootloader CRC value 0x0000_1FFE Bootloader CRC value

Bootloader coherency check code (<8KB) Bootloader coherency check code (<8KB) Bootloader coherency check code (<8KB)

0x0000_0000 0x0000_0000 0x0000_0000

Above sequence occurs if Image A is determined to be good. Legend Green indicates space that processor will be accessing for vector information or instructions

Address FRAM contents Address MCU SRAM contents after initial boot Address

MCU SRAM contents after Image A has been
found to be corrupted, portion of memory
moved and a software reset issued.

0x0001_FFFE Image B CRC value 0x0001_FFFE Image B CRC value 0x0001_FFFE Image B CRC value

0x0001_1000 0x0001_1000 0x0001_1000
0x0001_0FFE Image A CRC value 0x0001_0FFE Image A CRC value 0x0001_0FFE Image A CRC value

0x0000_2000 Image A Vector Space 0x0000_2000 Image A Vector Space 0x0000_2000 Image A Vector Space
0x0000_1FFE Bootloader CRC value 0x0000_1FFE Bootloader CRC value 0x0000_1FFE Bootloader CRC value

Bootloader coherency check code (<8KB) Bootloader coherency check code (<8KB) Bootloader coherency check code (<8KB)

0x0000_0000 0x0000_0000 0x0000_0000

Above sequence occurs if Image A is determined to be corrupt Legend Green indicates space that processor will be accessing for vector information or instructions

Image B Image B Image B

Image B Vector Space (~200 B) Image B Vector Space (~200 B) Image B Vector Space (~200 B)

Image A Code Image A Code Image A Code

Bootloader Vector Space (~200 B) Bootloader Vector Space (~200 B) Image A Vector Space

Image B Image B Image B

Bootloader Vector Space (~200 B) Bootloader Vector Space (~200 B) Image B Vector Space (~200 B)

Image B Vector Space (~200 B) Image B Vector Space (~200 B) Image B Vector Space (~200 B)

Image A Code Image A Code Image A Code

AN1217 – VA108x0 Boot Memory Robustness Improvement

6

1.4 Installing the programming file

A unique programming algorithm needs to be used that automatically calculates the CRC for
3 specific ranges and stores that information in NVM memory. That programming algorithm
is provided with this application note as VA108_FM25V20A_FRAM_128K_CRC.FLM. This
will only work with the Cypress SPI FRAM devices: FM25V20A or CYRS15B102.

In the root directory of the AN1217_SW.zip file, is a file titled:
VA108_FM25V20A_FRAM_128K_CRC.FLM. This file needs to be moved onto the PC with
the Keil MDK installed. Copy the file to the C:Keil_v5/ARM/Flash directory. From that
location, the IDE can locate the programming file.

2 Steps to install the Bootloader with CRC

This section contains step by step instructions on how to install and use the provided
bootloader.

2.1 Create and program image 1 – bootloader with CRC

The bootloader is programmed via the JTAG interface in the same way that other code
images are loaded. For the REB1 development board, the bootloader can be programmed
via USB through the J-Link OB interface. For other applications, use of an external JTAG
adapter will be necessary.

The AN1217_SW.zip file can be decompressed to reveal a folder structure like what is
shown here: RH-SIP -> CRC_bootloader

Figure 6 - Folder structure of AN2017_SW.zip

AN1217 – VA108x0 Boot Memory Robustness Improvement

7

Navigate to the CRC_bootloader folder and double click on the “CRC_bootloader” file with
file type = uVision5 Project. This should open the Keil IDE. It may be necessary to open the
options menu and change the debugger to match the one being used on your bench.

Build the project by selecting “Rebuild all target files” under the “Project” menu. The build
output window should show the code = 5880 bytes.

Figure 7 - Build output showing code size of 5880 bytes

Before programming the NVM, the programming algorithm must be selected. Under the
Project -> Options menu, select Utilities as shown here. Hit the “add” button and scroll to
find “VA108_FM25V20A_FRAM_128K_CRC.FLM”. Exit this menu by hitting OK and OK.

AN1217 – VA108x0 Boot Memory Robustness Improvement

8

Figure 8 - Screen capture showing programming algorithm being selected

Under the Flash menu, select the Download option. The console window at the bottom of
the IDE should show the results of the program operation after a few seconds. At this point,
the bootloader image has been programmed in the NVM.

2.2 Create and program image 2 – User code: Image A

Once a program (<61,437 bytes) has been created and debugged using native Arm M0
vector locations, it is ready for incorporating with the bootloader CRC. No change to the
code is necessary. However, the target memory location must be altered as shown in Figure
9.

AN1217 – VA108x0 Boot Memory Robustness Improvement

9

Figure 9 – Target Instruction ROM memory setup screen

Once this memory configuration information is entered, rebuild the project.

The program can be loaded via the bootloader as explained in the following sections of this
document or it may be done via the Keil IDE. When using the Keil IDE, a minor change to
the programming algorithm setup is recommended to avoid erasing the bootloader. As
shown in the below figure, click the “Do not erase” button. The FRAM device is not
required to be erased before programming and this will keep the bootloader and any other
images intact.

AN1217 – VA108x0 Boot Memory Robustness Improvement

10

Figure 10 - Keil Flash Download setup screen with "Do not Erase" selected

2.3 Create and program image 3 - User code: Image B

Creating and programming image B is very similar to image A with the sole difference being
the specified address for the programming to reside. The target memory setup should match
the following screen.

Figure 11 - Target memory setup for Image B

AN1217 – VA108x0 Boot Memory Robustness Improvement

11

2.4 File transfer with XMODEM and ExtraPuTTY
ExtraPuTTY is a fork of PuTTY terminal software that adds features, notably XMODEM file
transfer. It can be found here: http://www.extraputty.com/
Use the Windows Device Manager to find the COM port number of the USB to serial
adapter. Point ExtraPuTTY to this COM port number, with 115200 baud rate, 8 data bits, no
parity, and one stop bit (8-N-1). Alternate terminal windows like TerraTerm or PuTTY can be
used but they do not support the XMODEM download making programming impossible.

Figure 12 - PuTTY configuration for connecting to the VA108x0 Bootloader

Upon power-up of the connected MCU, the following message will appear on the terminal
window if the application code space is empty or corrupted.

If the application area is not empty (and valid), the user will have 5 seconds to press the
spacebar in the terminal window to enter the bootloader instead of running user code. If the
spacebar is not pressed within 5 seconds, the application firmware will run. This timeout
changes to 100ms when “PC Mode” in the bootloader code is disabled (it is a compile flag
in bootloader.h). An example of the text output in PC Mode when user application is valid,
but the spacebar has been pressed within the timeout period is shown:

AN1217 – VA108x0 Boot Memory Robustness Improvement

12

Figure 13 - VA108x0 Bootloader with CRC startup message –

A code image compiled for use with the VA108x0 Bootloader is different from a normal
firmware image only in that the code start address and IVT location has been changed from
0x0000 to 0x2000. To upload a .bin file, press the ‘u’ key in the terminal window. The
bootloader will then send a sequence of ‘C’ characters, a signal to the XMODEM protocol
to use the CRC-16 packet check mode (XMODEM-CRC). Then, in PuTTY, under ‘Files
Transfer’, under ‘Xmodem’, select ‘Send’. Choose the desired .bin file.

Figure 14 - Application binary file upload using Xmodem in ExtraPutty

The file will upload, copy over to the SPI boot ROM (EEPROM or FRAM), and then the
MCU will attempt to run the uploaded code image. If successful, it will look like the following
(Note: The ‘Hello World’ text is printed from a demo user application, depending on the
user code the text shown after ‘running application’ may look different):

AN1217 – VA108x0 Boot Memory Robustness Improvement

13

Figure 15 - A successful upload, followed by running of user application “Hello World”

If there is an error, the error will be reported, and the bootloader will reset and give the
option to retry the upload. It will not attempt to run an image that fails the write verification
or reset vector check.

3 Avoiding Single-Event-Functional-Interrupts

If an IC is not being used, placing it in a low power mode is recommended. In many
devices, the low power mode disables power to all, but the essential circuits needed for
waking up. This keeps those powered down circuits immune to particle strikes causing a
lock-up event.

In order to remove functional interruption errors such as when a chip is non-responsive, it
will most likely require power to be removed and then reapplied. Figure 16 illustrates one
method of removing power to the SPI memory without impacting other circuits on the board
using a small p-channel FET with a pull-down resistor on the gate. As the MCU goes through
the RESET sequence, the port pins will be tri-stated, and the resistor will turn the FET on and
power is applied to the NVM. After the boot sequence, software can turn the FET off,
removing power and making it immune to SEFI events.

Note that the I/O lines to the SPI memory should be driven low during the power-off interval
otherwise, it is possible that the SPI memory would try power the IC through a logic input
pin.

AN1217 – VA108x0 Boot Memory Robustness Improvement

14

Figure 16 - Power control of SPI NVM with p-channel FET

4 Conclusions

This application note has introduced the Vorago Technologies VA108x0 Bootloader and
examined its usage, mechanism of operation, and installation. To avoid SEFI events,
hardware considerations with powering down NVM when not being accessed were also
provided.

5 Other Resources

VORAGO VA108x0 programmers guide & VORAGO MCU products:
http://www.voragotech.com/VORAGO-products

VORAGO Application notes: http://www.voragotech.com/resources

VORAGO VA108x0 REB1board user guide: Part of Board Support Package (BSP)
http://www.voragotech.com/products/reb1

MCU NVM
SPI interface

4 lines

VDD

VDD

pMOS

GPIO

AN1217 – VA108x0 Boot Memory Robustness Improvement

15

Revision log:

July 2019 – Initial release

