
AN1208

VA10800/VA10820

VORAGO VA108x0 I2C programming application note
MARCH 14, 2017 Version 1.1

Abstract
There are hundreds of peripheral devices utilizing the I2C protocol. Most of these require
more than single byte transfers. The VORAGO I2C controller provides two 16-byte FIFOs to
reduce the CPU overhead when transferring packets of information. This application note
provides guidance on using the I2C control block. Software drivers accompany the document
for easy implementation into an application.

Table of Contents

1 Overview of I2C ... 1
2 VORAGO I2C block overview ... 3
3 Examples ... 5
4 Conclusions ... 16
5 Common questions and issues ... 16
6 Other Resources .. 17

1 Overview of I2C

Philips Semiconductors (now NXP Semiconductors) introduced the 2-wire communication
protocol in 1982. The latest revision of the specification can be found at:
http://www.nxp.com/documents/user_manual/UM10204.pdf. Some of the more pertinent
characteristics and features are listed here:

- Two wires are used, one is the clock (SCL) and the other is data (SDA).
- Discrete resistors on the printed circuit board pull-up both SCL and SDA to a logic

high. Master and slave devices can only pull the lines low.

AN1208 – VA108x0 I2C Application Note

2

Figure 1 - Example of single master I2C bus

- Nodes are either master or slave devices. Multiple masters can reside on the same
bus but every node is responsible for ensuring the bus is idle before commencing a
packet transmission. When a slave node is addressed, it must acknowledge each
byte of information sent to it. Failure to do so will cause that transaction to be
aborted.

- A master node provides the clock for entire transaction. The slave node responds
to clock edges and does not need to have a bit rate set.

- A master initiates a transaction and specifies which slave nodes should respond by
supplying a device address (7 or 10 bits) at the beginning of each transaction. The
initial byte of information sent contains a read / write bit in the least significant
position that determines if the packet is reading from or writing to the slave IC.

- The standard data rate is 100 kbits/second. A fast mode with 400 kbits/sec is
available. Higher data rates are sometimes implemented on single master systems
with very low bus capacitance.

- For multi-master systems, bus arbitration is performed by both masters transmitting
their intended destination address at the same time. The master with the lower
destination address will win (active pull-down device will keep SDA low). When
that happens, the losing master will drop off the bus for that transaction and
broadcast later when the bus becomes free.

- I2C conducts transactions in a byte by byte fashion with the slave node being
addressed acknowledging each byte before any additional activity.

o A HIGH to LOW transition on the SDA line while SCL is HIGH defines a
START condition.

AN1208 – VA108x0 I2C Application Note

3

o A LOW to HIGH transition on the SDA line while SCL is HIGH defines a
STOP condition.

Figure 2 - Data transfer on I2C bus showing START and STOP conditions

2 VORAGO I2C block overview

The full description of the block can be found in the VA10800/820 Programmers Guide.
This section provides supplemental information on how use the block in a final application.
The controller block supports both slave and master operation. It also supports fast and
normal mode along with 7 and 10 bit addressing modes. For sake of simplicity, this
document focuses on master mode with 7-bit addressing and normal bit rate.

There are two identical I2C blocks on both the VA10800 or VA10820. There is a pair of
dedicated open collector pins for each interface and no separate port pin initialization is
required. Before accessing any I2C registers, the peripheral clock for that block must be
enabled in the SYSCONFIG block’s PERIPHERAL_CLK_ENABLE register.

AN1208 – VA108x0 I2C Application Note

4

2.1 Master Mode Register summary

Name Description Overview and Use
CTRL Control register Sets parameters for block operation including the

enable bit
CLKSCALE Clock Scale register Divides system clock down to set bit rate
WORDS Word Count register Sets number of Words in a transaction
ADDRESS Address register This is the slave device’s address. It includes the

R/W bit in location b0.
DATA Data register This is entry point for Rx and Tx FIFO
CMD Command register Used to commence a transaction
STATUS I2C Controller Status register Provides information on the status of block and

FIFOs.
STATE Controller State register Used for test. Contains FIFO count information
TXCOUNT TX Count register Transaction data word count. Good to use for

longer transactions. -
RXCOUNT Rx Count register Transaction data word count. Good to use for

longer transactions.
IRQ_ENB Interrupt Enable Determines which of 14 interrupt sources are

enabled
IRQ_RAW Raw Interrupt Status Provides status of all 14 interrupt sources regardless

of enable bit
IRQ_END Enabled Interrupt Status Provides status of only enabled interrupt sources
IRQ_CLR Clear Interrupt Status Clears latched interrupt status bits. 1
RXFIFOIRQTRG Rx FIFO Trigger level register Sets watermark for triggering interrupt
TXFIFOIRQTRG Tx FIFO Trigger level register Sets watermark for triggering interrupt
FIFO_CLR FIFO Clear register Clears both Rx and Tx FIFO counters. Used prior to

a transaction
TMCONFIG Timing Config register Allows customized bit timing. By default, this is not

enabled.
CLKTOLIMIT Clock timeout register Used to generate interrupt if the clock line stays low

too long.

2.2 I2C block functional partitioning:

Each of the functional sections of the I2C module are briefly described in this section.

1 Seven of the 14 interrupt sources come directly from the STATUS register including the
most commonly used IDLE and I2CIDLE interrupts. These seven become active when the
corresponding STATUS bit goes from a 0 to 1 and stay latched. To clear the active interrupt
latch, a 1 must be written to the corresponding bit in IRQ_CLR.

AN1208 – VA108x0 I2C Application Note

5

§ ICLK generator: The I2C bus clock is created as a divisor of the system bus clock.
Standard speed, 100 kbps, requires the system bus be 20 times the I2C rate. For high
speed, 400 kbps, the bus must be 25 times the I2C bit rate.

§ Status and control registers: A set of registers is provided to configure the block and
to monitor the status.

§ Slave / Master controllers: There are separate blocks for master and slave control.
Both master and slave modes provide two 16-word FIFOs to simplify the transmit and
receive operations. These controllers handle all the bus activity including START /
STOP events, acknowledgement, clock stretching and arbitration.

§ Interrupt logic: Interrupt requests to the CPU can be generated when they are
enabled and the specified event occurs such as a FIFO being full or empty. The full list
of 14 interrupt sources is shown here.

i. I2C Bus Idle
ii. I2C Controller Idle
iii. Waiting
iv. Stalled
v. Arbitration lost
vi. NACK received on address
vii. NACK received on data

viii. Clock low time out
ix. Tx FIFO overflow
x. Rx FIFO overflow
xi. Tx FIFO ready for data
xii. Rx FIFO has data ready
xiii. Tx FIFO is empty
xiv. Rx FIFO is full

§ IO interface and filters: Digital and analog glitch filters can be optionally enabled.
When running the system clock at 50 MHz, the digital filter is recommended. When
running below 20 MHz or using I2C fast mode, the analog filter is recommended.

3 Examples

The following sections provide example software programs to setup and operate the I2C
block.

3.1 I2C peripheral initialization

Out of RESET, the block is disabled and all registers are set to their default value. Prior to
writing any I2C registers, the clock must be enabled in the System Configuration Peripheral -
> Peripheral Clock Enable CTRL register. The pins used for the I2C functions are dedicated
and require no setup.

There are filters available on the clock and data pins. Analog or Digital sampling can be
configured in the CTRL register.

AN1208 – VA108x0 I2C Application Note

6

The bit rate must be set by the CLKSCALE register. The programmer’s manual has a
convenient table to reference. For all examples in this AN, the bus frequency is 50 MHz, so
the lower 8 bits of CLKSCALE must have 0x18.

The master or slave mode must be selected in the CTRL register.

Summary of steps to setup the I2C module

1. Enable peripheral clocks in SYSCONFIG->PERIPHERAL_CLK_ENABLE

2. Configure the I2C block

a. Set I2C clock generator (ICLK) in CLKSCALE register

b. Clear both Rx and Tx FIFO in the FIFO_CLR register

c. Set operating parameters and enable the block in the CTRL register

At this point, the I2C module is ready to transmit or receive information.

Example code to show block initialization is shown here.

Figure 3 - I2C initialization code example

3.2 I2C master write operations

Write operations will have three pieces of information:
a) device address
b) address in the device’s memory map
c) data to be written.

AN1208 – VA108x0 I2C Application Note

7

Depending on the slave device, the memory map may require 1, 2 or 3 bytes for an
address. The data being written can be a single byte or multiple bytes. The master will
retain ownership of the bus until it asserts a stop condition (releases both SDA and SCL).

For this example, consider the case of a 16k byte memory slave device with a device
address of 0x50. Four bytes (0x55, 0xAA, 0x00, 0xFF) will be written to an address range
starting at 0x1234. The below diagram shows the time line of bus activity. The 0, 1 and A
characters in the grey boxes show the SDA information.

Figure 4 - I2C bus activity time line for writing data = 0x55AA00FF to address 0x1234

The controller has a register, WORDS, to determine the transaction length and clock the
proper number of bytes. The WORDS register must be loaded before a transaction starts.
For our example the number written to WORDS is 0x06.

The intended device address must be written to the ADDRESS register. This can be either the
standard 7-bit address or the longer 10-bit address. For this example, the device address is
0x50. The value written to ADDRESS is the device address shifted left 1 position with a 0 in
the least significant bit to designate a write operation. Therefore, 0x00A0 would be written
to ADDRESS.

Note that not all slave device addresses are documented identically, some include
the R/W bit and some do not. Pay close attention to how the slave device calls out
the address as being either 7 or 8 bits.

The DATA register is the entry point to the Rx and Tx FIFO. Data must be loaded into the
FIFO before the transaction starts. For our example, there are 6 writes to the FIFO: 0x12,
0x34, 0x55, 0xAA, 0x00, 0xFF.

Finally, to commence the transaction, the CMD register is written to. Both the START and
STOP bits in this register need to be set for an atomic transaction. For our example, CMD =

AN1208 – VA108x0 I2C Application Note

8

0x3 would be written. At this point the module would begin the transaction. If the slave
device is acknowledging, the above waveform should be seen. If the slave device is not
active, only the first byte is transmitted.

Summary of steps:

1. Set number of data bytes, WORDS = 0x06
2. Load Tx FIFO with data, DATA = 0x12, 0x34, 0x55, 0xAA, 0x00, 0xFF. (6 separate

write operations)
3. Set slave address, ADDRESS = 0x0A
4. Start transaction, CMD = 0x3

3.2.1 Example code and waveform for a 10-bit DAC

The following code snippet sends data to a 10-bit Digital to Analog converter. The
converter has an input format of the 8 most-significant-bits in first byte and the 2 least-
significant-bits in second byte.

Byte 1 – Bits 9 to 2 Byte 0 – Bits 1 & 0

Figure 5 - Example code for sending data to a 10-bit DAC.

AN1208 – VA108x0 I2C Application Note

9

Figure 6 - Scope capture of transaction to 10-bit DAC

3.3 I2C block master read operations

Read operations are like the write operation except instead of writing to the Tx FIFO before
the transaction, the read data is pulled from the Rx FIFO after the transaction is complete. A
10-bit ADC is used for this example. It has an address of 0x9A and requires no initial setup
commands.

Steps to setup the module

1. Initialize I2C block as shown in section 3.1

2. Set WORD = 2

3. Set ADDRESS = 0x9A with b0 = 1 for read.

4. Set CMD = 3, start and stop transaction

5. Poll for IDLE = 1

6. Read Rx FIFO and shift and combine data for result

A short code example to perform these steps is shown here.

AN1208 – VA108x0 I2C Application Note

10

Figure 7 - Example code for reading 10-bit ADC via I2C

Figure 8 - Scope capture of I2C transaction reading 10-bit ADC

AN1208 – VA108x0 I2C Application Note

11

3.4 I2C block master write then read operation

Some I2C slave devices require an address pointer to be written prior to data being read.
The below code example reads temperature sensor that requires an address to be sent prior
to the read command.

Figure 9 - Example code to read temperature sensor

AN1208 – VA108x0 I2C Application Note

12

Figure 10 - Scope capture of I2C transaction to read a temperature sensor

3.5 Interrupt operation mode

Continually polling the STATUS register for a transaction to complete is the simplest way to
control activity on the I2C bus. However, this can consume valuable CPU cycles that could
be used for other tasks. A single byte I2C transaction at normal speed is approximately 90
microseconds (9 bits x (1/100kHz)). For longer transactions, the use of polling can become
prohibitive and using interrupts is preferred.

Using interrupts can allow the I2C to be performing transactions while the CPU is handling
other tasks in parallel. It does add to the complexity of configuring the module and a
separate interrupt subroutine is required.

The VA108xx family allows 14 sources of interrupts from the I2C block that all get OR’ed
together as shown in Figure 11. Seven of the sources come from the STATUS register and
are latched when the STATUS bit goes from a 0 to 1. All interrupt sources can be monitored
in IRQ_RAW. To clear latched interrupts, a 1 must be written to the corresponding bit
position in IRQ_CLR. Only interrupt sources that have the corresponding bit set in IRQ_ENB
can trigger an interrupt.

AN1208 – VA108x0 I2C Application Note

13

The IRQ selector (IRQSEL) peripheral routes the pin, timer and peripheral interrupt signals to
32 IRQ inputs of the NVIC. The M0 NVIC has 4 levels of priorities. The NVIC interrupt
pending flag will be cleared when the interrupt is serviced. Software does not need to
manually clear this bit. See Figure 11 for the path an interrupt source traverses from the I2C
block to the CPU.

Figure 11 - Interrupt source table and path to CPU

Steps to setup the module for generating interrupts on an IDLE condition

1. Initialize the I2C block as described in section 3.1.

2. Set the IDLE bit in the IRQ_ENB register

3. Assign the I2CB interrupt to NVIC input 22 in the IRQSEL block.

4. In the NVIC, set priority level of IRQ22 and enable interrupts on the NVIC OC22.

Example code is shown here.

AN1208 – VA108x0 I2C Application Note

14

Figure 12 - Example code to prepare for interrupts from I2CB IDLE condition

Steps to service the I2C block in an ISR for a read operation
1. Read the contents of the DATA register to empty the FIFO

2. If another transaction is to follow:

a. Write to WORDS, ADDRESS, DATA and CMD as required

b. Clear the pending IDLE interrupt bit by writing a 1 to the corresponding bit in

IRQ_CLR

3. If no more transactions are to follow:

a. Optionally, disable all interrupts by writing a 0x0 to IRQ_ENB

b. Optionally, the NVIC OC22 can be disabled.

Example code for reading a 10-bit ADC four times is shown here

AN1208 – VA108x0 I2C Application Note

15

Figure 13 - Example code for Interrupt Service routine for an ADC on I2C bus

The waveform shown in Figure 14 shows 3 of the 4 ADC read transactions. The bottom
trace shows the time the CPU is executing code in the ISR.

AN1208 – VA108x0 I2C Application Note

16

Figure 14 - Scope capture of 3 of 4 ADC read transactions. Bottom trace shows time spent
in ISR servicing the I2C.

4 Conclusions

The I2C block has many options and a 16-word FIFO that makes it very flexible and capable
of very efficient transaction management for a wide variety of I2C peripherals. For simple
I2C devices like a port expander, using a polled method may be perfectly fine. However,
for I2C memory devices that require lots of data to be transferred, making use of the FIFO
and interrupt features is highly recommended.

This application note has provided several example operations for reading and writing to
different I2C devices using both polling and interrupt driven methods. You should be able to
quickly adapt one of these examples to interface to the peripheral you are using.

5 Common questions and issues

1. The MCU successfully sends a device address byte but the slave device does not

acknowledge. What can be going on?

AN1208 – VA108x0 I2C Application Note

17

a. Most likely the wrong device address is being sent. Check the slave device’s
address which can sometimes be configured via pins on the device.

b. Other possibilities include the SCL and SDA pins being swapped or the slave
device not being powered.

2. The slave device responds with an acknowledge but not all transactions are
completed successfully.

a. Check the integrity of the data line (SDA). Sometimes the pull-up resistor is not
properly sized or there is too much board capacitance.

b. Other master nodes may be active when a transaction starts. Before
transmitting, check that the bus is idle.

3. The ISR for an IDLE condition immediately calls itself time after time even though the
IDLE flag in the STATUS register is not set. What is going on?

a. The IDLE bit in IRQ_RAW is a latched value. The last time the STATUS:IDLE bit
changed from a 0 to 1, the IRQ_RAW:IDLE bit was set and stays set until the
IRQ_CLR:IDLE bit has a 1 written to it. Before leaving the ISR, write a 1 to the
IRQ_CLR:IDLE bit.

6 Other Resources

VORAGO VA108x0 programmers guide:
http://www.voragotech.com/sites/default/files/VA10800_VA10820_PG_July2016revision
1.16%5B4%5D.pdf

VORAGO MCU products: http://www.voragotech.com/VORAGO-products

VORAGO Application notes: http://www.voragotech.com/resources

VORAGO VA108xx REB1board user guide: Part of Board Support Package (BSP)
http://www.voragotech.com/products/reb1

I2C Specification: http://www.nxp.com/documents/user_manual/UM10204.pdf

Revision log:

March 27, 2017 – Revision 1.1
- Print font set to Futura
- Corrected spelling of Philips
- Added Table of Contents

